Optimización de las proporciones de nitrógeno para arándanos cultivados bajo medio salino

Autores/as

  • Luis E. Espinoza-Orozco Doctorado en Ciencias en Agricultura Protegida-Universidad Autónoma Agraria Antonio Narro-Departamento de Horticultura. Calzada Antonio Narro 1923, Saltillo, Coahuila, México. CP. 25315
  • Rocío M. Peralta-Manjarrez Postdoctorante SECITHI-Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Saltillo, Coahuila, México. CP. 25315
  • Marcelino Cabrera-De la Fuente Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Saltillo, Coahuila, México. CP. 25315
  • Adalberto Benavides-Mendoza Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Saltillo, Coahuila, México. CP. 25315
  • Alberto Sandoval-Rangel Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Saltillo, Coahuila, México. CP. 25315
  • Emilio Olivares-Sáenz Facultad de Agronomía-Universidad Autónoma de Nuevo León. Francisco I. Madero S/N, Hacienda el Canadá, General Escobedo, Nuevo León, México. CP. 66050

DOI:

https://doi.org/10.29312/remexca.v16i8.4138

Palabras clave:

Vaccinium corymbosum L., amonio, calidad, estrés, nitrato, rendimiento

Resumen

La producción de arándano (Vaccinium corymbosum L.) en México se encuentra en rápida expansión; sin embargo, el manejo del nitrógeno y el estrés salino siguen siendo desafíos importantes. Este estudio evaluó los efectos de la fertilización con amonio (NH4+) y nitrato (NO3-), con o sin cloruro de sodio (NaCl, 30 mM), sobre el crecimiento, el rendimiento y la calidad del fruto del arándano ‘Biloxi’ cultivado en sustrato de fibra de coco. Se empleó un diseño factorial 3x3 completamente aleatorizado más un control, variando la fuente de nitrógeno, la concentración (75% y 100%) y la salinidad. El NH4+ incrementó significativamente la biomasa (121.2%), la producción de flores (316%), el número de frutos (231%) y el rendimiento (162.7%) en comparación con el NO3-. Una dosis de N del 100% mejoró los brotes (19.5%) y el conteo de frutos (43.4%), pero redujo el tamaño del fruto. La salinidad redujo el número de frutos (-70.3%) y el rendimiento (-53.1%) sin afectar el crecimiento vegetativo. Las interacciones significativas entre la fuente de nitrógeno, su concentración y la salinidad influyeron en la floración, la calidad y las características agronómicas. Los resultados indican que la fertilización con NH4+ mejora la productividad del arándano en condiciones salinas, lo que favorece estrategias de gestión del nitrógeno más eficientes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, A. 2020. Nitrate assimilation pathway in higher plants: critical role in nitrogen signaling and utilization. Plant Science Today. 7(2):182-192 https://doi.org/10.14719/PST.2020.7.2.637.

Alt, D. S.; Doyle, J. W. and Malladi, A. 2017. Nitrogen-source preference in blueberry (Vaccinium sp.): enhanced shoot nitrogen assimilation in response to direct supply of nitrate. J. Plant Physiol. 216(1):79-87. https://doi.org/10.1016/j.jplph.2017.05.014.

Anwar, A.; Zheng, J.; Chen, C.; Chen, M.; Xue, Y.; Wang, J.; Su, W.; Chen, R. and Song, S. 2024. Effects of NH4+-N: NO3−-N ratio on growth, nutrient uptake and production of blueberries (Vaccinium spp.) under soilless culture. Front Plant Sci. 15(1438811):1-16. https://doi.org/10.3389/fpls.2024.1438811.

Arias, M. I.; Nario, A.; Rojas, K.; Blanc, P. and Bonomelli, C. 2024. Newly established blueberry plants: the role of inorganic nitrogen forms in nitrogen and calcium absorption. Horticulturae. 10(11):1-11. https://doi.org/10.3390/horticulturae10111168.

Atta, K.; Mondal, S.; Gorai, S.; Singh, A. P.; Kumari, A.; Ghosh, T.; Roy, A.; Hembram, S.; Gaikwad, D. J.; Mondal, S.; Bhattacharya, S.; Jha, U. C. and Jespersen, D. 2023. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Front Plant Sci. 14(1241736):1-21. https://doi.org/10.3389/fpls.2023.1241736.

Berger, A.; Boscari, A.; Horta-Araújo, N.; Maucourt, M.; Hanchi, M.; Bernillon, S.; Rolin, D.; Puppo, A. and Brouquisse, R. 2020. Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the medicago truncatula-sinorhizobium meliloti symbiosis. Front Plant Sci. 11(1313):1-16. https://doi.org/10.3389/fpls.2020.01313.

Cárdenas-Navarro, R.; Luna-Béjar, J. A.; Castellanos-Morales, V. C.; Bravo-Hernández, N. L. and López-Pérez, L. 2024. Effect of the concentration and ionic form of nitrogen (N) on photosynthesis, growth and fruit production of blueberry (Vaccinium corymbosum L.). Biotecnia. 26(e2325):9. https://doi.org/10.18633/biotecnia.v26.2325.

Denaxa, N. K.; Nomikou, A.; Malamos, N.; Liveri, E.; Roussos, P. A. and Papasotiropoulos, V. 2022. Salinity effect on plant growth parameters and fruit bioactive compounds of two strawberry cultivars, coupled with environmental conditions monitoring. Agronomy. 12(10):1-20. https://doi.org/10.3390/agronomy12102279.

Doyle, J. W.; Nambeesan, S. U. and Malladi, A., 2021. Physiology of nitrogen and calcium nutrition in blueberry (Vaccinium sp.). Agronomy. 11(4):765:1-25. https://doi.org/10.3390/agronomy11040765.

Duan, Y.; Yang, H.; Wei, Z.; Yang, H.; Fan, S.; Wu, W.; Lyu, L. and Li, W. 2023. Effects of different nitrogen forms on blackberry fruit quality. Foods. 12(2)1-18. https://doi.org/10.3390/foods12122318.

Fang, Y.; Nunez, G. H.; Silva, M. N.; Phillips, D. A. and Munoz, P. R. 2020a. A review for Southern Highbush Blueberry alternative production systems. Agronomy. 10(10):1-15. https://doi.org/10.3390/agronomy10101531.

Farvardin, A.; González‐Hernández, A. I.; Llorens, E.; García‐Agustín, P.; Scalschi, L. and Vicedo, B. 2020. The apoplast: a key player in plant survival. Antioxidants. 9(7):1-25. https://doi.org/10.3390/antiox9070604.

Ferrão, L. F. V.; Benevenuto, J.; Oliveira, I. B.; Cellon, C.; Olmstead, J.; Kirst, M.; Resende, M. F. R. and Munoz, P. 2018. Insights into the genetic basis of blueberry fruit-related traits using diploid and polyploid models in a was context. Front Ecol. Evol. 6(107):1-16. https://doi.org/10.3389/fevo.2018.00107.

Frías-Ortega, C. E.; Alejo-Santiago, G.; Bugarín-Montoya, R.; Aburto-González, C. A.; Juárez-Rosete, C. R.; Urbina-Sánchez, E. y Sánchez-Hernández, E. 2020. Concentración de la solución nutritiva y su relación con la producción y calidad de arándano azul. Ciencia Tecnología Agropecuaria. 21(3):1-14. https://doi.org/10.21930/RCTA.

Hirzel, J.; Muñoz, V. P.; Moya-Elizondo, E.; Lagos, O.; Balbontín, C. and Uribe, H. 2024. Use of increasing rates of ammonia nitrogen in pot-grown blueberries and its effect on fruit yield and macronutrient concentration in leaves. Chil. J. Agric. Res. 84(3):454-466. https://doi.org/10.4067/S0718-58392024000300454.

Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J. and Yu, H. 2019. Growth, fruit yield, photosynthetic characteristics, and leaf microelement concentration of two blueberry cultivars under different long term soil pH treatments. Agronomy. 9(7):1-13. https://doi.org/10.3390/horticulturae10111168.

Kesawat, M. S.; Satheesh, N.; Kherawat, B. S.; Kumar, A.; Kim, H. U.; Chung, S. M. and Kumar, M. 2023. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules current perspectives and future directions. Plants. 12(4):1-37. https://doi.org/10.3390/plants12040864.

Krishna, P.; Pandey, G.; Thomas, R. and Parks, S. 2023. Improving blueberry fruit nutritional quality through physiological and genetic interventions: a review of current research and future directions. Antioxidants. 12(4):810-830. https://doi.org/10.3390/antiox12040810.

Leal-Ayala, O. G.; Sandoval-Villa, M.; Trejo-Téllez, L. I.; Sandoval-Rangel, A.; Fuente, M.C. and Benavides-Mendoza, A. 2021. Nitrogen form and root division modifies the nutrimental and biomolecules concentration in blueberry (Vaccinium corymbosum L.). Not. Bot. Horti. Agrobot. Cluj. Napoca. 49(1):1-12. https://doi.org/10.15835/nbha49111998.

Machado, R. M. A.; Bryla, D. R. and Vargas, O. 2014. Effects of salinity induced by ammonium sulfate fertilizer on root and shoot growth of highbush blueberry. Acta Hortic. 1017(49):407-414. https://doi.org/10.17660/ActaHortic.2014.1017.49.

Meléndez-Jácome, M. R.; Flor-Romero, L. E.; Sandoval-Pacheco, M. E.; Vasquez-Castillo, W. A. and Racines-Oliva, M. A. 2021. Vaccinium spp. karyotypic and phylogenetic characteristics, nutritional composition, edaphoclimatic conditions, biotic factors and beneficial microorganisms in the rhizosphere. Scientia Agropecuaria. 12(1):109-120. https://doi.org/10.17268/sci.agropecu.2021.013.

Molnar, S.; Clapa, D.; Pop, V. C.; Hã‚rèša, M.; Andrecan, F. A. and Bunea, C. I. 2024. Investigation of salinity tolerance to different cultivars of highbush blueberry (Vaccinium corymbosum L.) grown in vitro. Not. Bot. Horti. Agrobot. Cluj. Napoca. 52(1):13691:1-17. https://doi.org/10.15835/nbha52113691.

Nazir, F.; Mahajan, M.; Khatoon, S.; Albaqami, M.; Ashfaque, F.; Chhillar, H.; Chopra, P. and Khan, M. I. R. 2023. Sustaining nitrogen dynamics: a critical aspect for improving salt tolerance in plants. Front Plant Sci. 14(108796):1-18. https://doi.org/10.3389/fpls.2023.1087946.

Santiago, J. P. and Sharkey, T. D. 2019. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant Cell Environ. 42(10):1-17. https://doi.org/10.1111/pce.13576.

Sellami, S.; Le-Hir, R.; Thorpe, M. R.; Vilaine, F.; Wolff, N.; Brini, F. and Dinant, S. 2019. Salinity affects sugar homeostasis and vascular anatomy in the stem of the arabidopsis thaliana inflorescence. Int. J. Mol. Sci. 20(13):3167-1-19 https://doi.org/10.3390/ijms20133167.

Shilpha, J.; Song, J. and Jeong, B. R. 2023. Ammonium phytotoxicity and tolerance: an insight into ammonium nutrition to improve crop productivity. Agronomy. 13(6):11-23. https://doi.org/10.3390/agronomy13061487.

Trejo-Pech, C. O.; Rodríguez-Magaña, A.; Briseño-Ramírez, H. and Ahumada, R. 2024. A Monte Carlo simulation case study on blueberries from Mexico. International Food and Agribusiness Management Review. 27(2):359-377. https://doi.org/10.22434/ifamr2023.0052.

Wu, H. 2018. Plant salt tolerance and Na+ sensing and transport. Crop Journal. 6(3):215-225. https://doi.org/10.1016/j.cj.2018.01.003.

Yang, Y.; Huang, Z.; Wu, Y.; Wu, W.; Lyu, L. and Li, W., 2023. Effects of nitrogen application level on the physiological characteristics, yield and fruit quality of blackberry. Sci Hortic. 313. 111915. https://doi.org/10.1016/j.scienta.2023.111915.

Zhang, X.; Li, S.; An, X.; Song, Z.; Zhu, Y.; Tan, Y.; Guo, X. and Wang, D. 2023. Effects of nitrogen, phosphorus and potassium formula fertilization on the yield and berry quality of blueberry. PLoS One. 20(1):1-13. e0318032. https://doi.org/10.1371/journal.pone.0283137.

Publicado

2025-12-14

Cómo citar

Espinoza-Orozco, Luis E., Rocío M. Peralta-Manjarrez, Marcelino Cabrera-De la Fuente, Adalberto Benavides-Mendoza, Alberto Sandoval-Rangel, y Emilio Olivares-Sáenz. 2025. «Optimización De Las Proporciones De nitrógeno Para arándanos Cultivados Bajo Medio Salino». Revista Mexicana De Ciencias Agrícolas 16 (8). México, ME:e4138. https://doi.org/10.29312/remexca.v16i8.4138.

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 > >> 

Artículos similares

También puede {advancedSearchLink} para este artículo.