Tasa de aireación de la degradación aerobia en la fracción orgánica de residuos sólidos urbanos
DOI:
https://doi.org/10.29312/remexca.v12i7.2760Palabras clave:
actividades enzimáticas, respirometría, tasa de aireaciónResumen
La cinética microbiana y enzimática son factores importantes durante la degradación aerobia de la fracción orgánica de los residuos sólidos urbanos, estas dependen principalmente de la temperatura de incubación y las tasas de aireación. El objetivo de esta investigación fue evaluar el proceso de degradación aerobia, por múltiples variables y su combinación para comprender las interacciones entre las tasas de aireación en la degradación aerobia y sus respuestas. Las tasas de aireación se fijaron en 0.032, 0.064, 0.125, 0.251 y 0.392 L de aire húmedo kg-1 min-1 a 35 °C con inóculo. La actividad microbiana se evaluó de forma indirecta por medio de la respirometria; es decir, la generación de CO2 y el consumo de O2. Las actividades enzimáticas extracelulares (es decir, pectinasas, celulasas, xilanasas y proteasas) se cuantificaron mediante la liberación de los azúcares reductores. Los diferentes ensayos se realizaron en la Universidad Autónoma Metropolitana Unidad Iztapalapa en septiembre de 2019. Encontrando una fuerte relación positiva entre la actividad enzimática xilanasa y pectinasa con la pérdida de peso en seco, junto con el aumento de las actividades celulasas y xilanasas a mayores tasas de aireación.
Descargas
Citas
Alef, K. and Nannipieri, P. 1995. Chapter 7-Enzyme activities. In: Methods in Applied Soil Microbiology and Biochemistry. Kassem, A.; Paolo, N. (eds). 1st Edition. Academic Press. London. 311- 373 pp.
ASTM (American Society for Testing and Materials) D5231-92. 2016. Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. ASTM International. West Conshohocken. Pensilvania. USA. 6 p. https://doi.org/10.1520/ D5231-92R16.
Bayard, R.; Gonzalez-Ramirez, L.; Guendouz, J.; Benbelkacem, H.; Buffière, P. and Gourdon, R. 2015. Statistical analysis to correlate bio-physical and chemical characteristics of organic wastes and digestates to their anaerobic biodegradability. Waste and biomass valorization. 6 (5), 759-769. https://doi.org/10.1007/s12649-015-9411-2.
Bernal, M. P.; Alburquerque, J. A. and Moral, R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review Bioresource Technology. 100(22):5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027.
Brenner, D. J. and Farmer III, J. J. 2005. Family I. Enterobacteriaceae. In: Bergey’s Manual of Systematic Bacteriology. Brenner D. J.; Krieg N. R.; Staley J. T. ; Garrity G. M.; Boone, D. R.; Vos, P.; Goodfellow, M.; Rainey, F. A. and Schleifer, K. H. (eds). 2nd ed. Springer. New York, USA. 587-607 pp. https://doi.org/10.1002/9781118960608.fbm00222.
El Achkar, J. H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R. G. and Lanoisellé, J. L. 2017. Anaerobic digestion of nine varieties of grape pomace: correlation between biochemical composition and methane production. Biomass Bioenergy. 107:335-344. https://doi.org/10.1016/j.biombioe.2017.10.030.
Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59(2):257-268. https://doi.org/10.1351/pac198759020257.
Gil, A.; Toledo, M.; Siles, J. A. and Martín, M. A. 2018. Multivariate analysis and biodegradability test to evaluate different organic wastes for biological treatments: anaerobic co-digestion and co-composting. Waste Management. 78:819-828. https://doi.org/10.1016/j.wasman. 2018.06.052.
Golias, H.; Dumsday, G. J.; Stanley, G. A. and Pamment, N. B. 2002. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and zymomonas mobilis. J. Biotechnol. 96(2):155-168. https://doi.org/10.1016/S0168-1656 (02)00026-3.
Goyal, S.; Dhull, S. K. and Kapoor, K. K. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bior. Technol. 96(14):1584-1591. https://doi.org/10.1016/j.biortech.2004.12.012.
Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y. and Shen, Y. 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bior. Technol. 112:171-178. https://doi.org/10.1016/j.biortech.2012.02.099.
He, Y.; Xie, K.; Xu, P.; Huang, X.; Gu, W.; Zhang, F. and Tang, S. 2013. Evolution of microbial community diversity and enzymatic activity during composting. Res. Microbiol. 164(2):189-198. https://doi.org/10.1016/j.resmic.2012.11.001.
Kayikçioğlu, H. H. and Okur, N. 2011. Evolution of enzyme activities during composting of tobacco waste. Waste Manag. Res. 29(11):1124-1133. https://doi.org/10.1177/0734242X 10392813.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Ev. 16(2):111-120. https://doi.org/10.1007/BF01731581.
Komilis, D.; Kontou, I. and Ntougias, S. 2011. A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Bior. Technol. 102(10):5863-5872. https://doi.org/10.1016/j.biortech.2011.02.021.
Kumar, S.; Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7):1870-1874. https://doi.org/10.1093/ molbev/msw054.
Lewin, G. R.; Carlos, C.; Chevrette, M. G.; Horn, H. A.; McDonald, B. R.; Stankey, R. J. and Currie, C. R. 2016. Evolution and ecology of actinobacteria and their bioenergy applications. Annual Review MicrobioL. 70:235–254. https://doi.org/10.1146/annurev-micro-102215-095748.
Li, Z.; Lu, H.; Ren, L. and He, L. 2013. Experimental and modeling approaches for food waste composting: a review. Chemosphere. 93(7):1247-1257. https://doi.org/10.1016/j. chemosphere.2013.06.064.
Liang, C.; Das, K. C. and McClendon, R. W. 2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bior. Technol. 86(2):131-137. https://doi.org/10.1016/S0960-8524 (02)00153-0.
Liu, X.; Bayard, R.; Benbelkacem, H.; Buffière, P. and Gourdon, R. 2015. Evaluation of the correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion process and their biochemical characteristics. Biom. Bioen. 81:534-543. https://doi.org/10.1016/j.biombioe.2015.06.021.
Loera, O. and Córdoba, J. 2003. Improvement of xylanase production by a parasexual cross between Aspergillus niger strains. Braz. Archiv. Biol. Technol. 46(2):177-181. https://doi.org/10.1590/S1516-89132003000200006.
Martínez-Valdez, F. J.; Martínez-Ramírez, C.; Martínez-Montiel, L.; Favela-Torres, E.; Soto-Cruz, N. O.; Ramírez-Vives, F. and Saucedo-Castañeda, G. 2015. Rapid mineralisation of the organic fraction of municipal solid waste. Bior. Technol. 180:112-118. https://doi.org/10.1016/j.biortech.2014.12.083.
Martins, S.; Mussatto, S. I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C. N. and Teixeira, J. A. 2011. Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 29(3):365-373. https://doi.org/10.1016/j. biotechadv.2011.01.008.
Mitra, S.; Khare, S. K. and Singh, R. 2010. Alkaline lipase production from Enterobacter aerogenes by solid-state fermentation of agro-industrial wastes. International Journal of Environment and Waste Management, 5 (3-4), 410-418. https://doi.org/10.1504/IJEWM.2010.032017.
Neilson, J. W.; Jordan, F. L. and Maier, R. M. 2013. Analysis of artifacts suggests EGGD should not be used for quantitative diversity analysis. J. Microbiol. Methods. 92(3):256-263.https://doi.org/10.1016/j.mimet.2012.12.021.
Puyuelo, B.; Ponsá, S.; Gea, T. and Sánchez, A. 2011. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere. 85(4):653-659. https://doi.org/10. 1016/j.chemosphere.2011.07.014.
Radojkovic, D. and Kušic, J. 2000. Silver staining of denaturing gradient gel electrophoresis gels. Clinical Chem. 46(6):883-884.
Rasapoor, M.; Nasrabadi, T.; Kamali, M. and Hoveidi, H. 2009. The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Management. 29(2):570-573. https://doi.org/10.1016/j.wasman.2008.04.012.
Raut, M. P.; Prince-William, S. P; Bhattacharyya, J. K.; Chakrabarti, T. and Devotta, S. 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bior. Technol. 99(14):6512-6519. https://doi.org/10.1016/j.biortech.2007.11.030.
Rodríguez-Fernández, D. E.; Rodríguez-León, J. A.; de-Carvalho, J. C.; Karp, S. G.; Sturm, W.; Parada, J. L. and Soccol, C. R. 2012. Influence of airflow intensity on phytase production by solid-state fermentation. Bior. Technol. 118:603-606. https://doi.org/10.1016/j.biortech. 2012.05.032.
Saludes, R. B.; Iwabuchi, K.; Kayanuma, A. and Shiga, T. 2007. Composting of dairy cattle manure using a thermophilic-mesophilic sequence. Biosystems Engineering. 98(2):198-205. https://doi.org/10.1016/j.biosystemseng.2007.07.003.
Saucedo-Castañeda, G.; Favela-Torres, E.; Viniegra-González, G.; Torres-Mancera, M. T.; Figueroa-Montero, A. and Rosales-Zamora, G. 2013. Respirometry system with remote management for the on-line monitoring of the concentration of CO2 and O2 and flow of the exhausting gases in biological processes. Mexican patent 336733 granted January 22 th, 2016.
Tiquia, S. M. 2002. Evolution of extracellular enzyme activities during manure composting. J. Appl. Microbiol. 92(4):764-775. https://doi.org/10.1046/j.1365-2672.2002.01582.x.
Toledo, M.; Siles, J. A.; Gutiérrez, M. C. and Martín, M. A. 2018. Monitoring of the composting process of different agroindustrial waste: Influence of the operational variables on the odorous impact. Waste Management. 76:266-274. https://doi.org/10.1016/j.wasman. 2018.03.042.
Torres-Mancera, M. T.; Figueroa-Montero, A.; Favela-Torres, E.; Rosales-Zamora, G.; Nampoothiri, K. M. and Saucedo-Castañeda, G. 2018. Online monitoring of solid-state fermentation using respirometry. In current developments in biotechnology and bioengineering. Elsevier. 97-108 pp. https://doi.org/10.1016/B978-0-444-63990-5.00006-2.
Wang, C.; Dong, D.; Wang, H.; Müller, K.; Qin, Y.; Wang, H. and Wu, W. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels. 9(1):22-31. https://doi.org/10.1186/s13068-016-0440-2.
Xu, S. Y.; Karthikeyan, O. P.; Selvam, A. and Wong, J. W. C. 2012. Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bior. Technol. 126:425-430. https://doi.org/10.1016/j.biortech.2011.12.059.
Zhang, J.; Henriksson, G. and Johansson, G. 2000. Polygalacturonase is the key component in enzymatic retting of flax. J. Biotechnol. 81(1):85-89. https://doi.org/10.1016/S0168-1656 (00)00286-8.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Mexicana de Ciencias Agrícolas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores(as) que publiquen en Revista Mexicana de Ciencias Agrícolas aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, Revista Mexicana de Ciencias Agrícolas reconoce y respeta el derecho moral de los autores(as), así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Los autores(as) deben de pagar una cuota por recepción de artículos antes de pasar por dictamen editorial. En caso de que la colaboración sea aceptada, el autor debe de parar la traducción de su texto al inglés.
Todos los textos publicados por Revista Mexicana de Ciencias Agrícolas -sin excepción- se distribuyen amparados bajo la licencia Creative Commons 4.0 atribución-no comercial (CC BY-NC 4.0 internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en Revista Mexicana de Ciencias Agrícolas (por ejemplo incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en Revista Mexicana de Ciencias Agrícolas.
Para todo lo anterior, los autores(as) deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores(as). Este formato debe ser remitido en archivo PDF al correo: revista_atm@yahoo.com.mx; revistaagricola@inifap.gob.mx.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.