The aeration rate in the aerobic degradation of the organic fraction of municipal solid waste

Authors

  • Gabriela Carrillo-Sancen División Químico Biológicas-Universidad Tecnológica de Tecámac. Tecámac, Estado de México, México. CP. 55740.
  • Manuel Alejandro Cuautle-Marin Laboratorio de investigación en procesos avanzados de tratamiento de aguas-Instituto de Ingeniería-Unidad Académica Juriquilla-Universidad Nacional Autónoma de México. Blvd. Juriquilla 3001, Querétaro, México
  • Francisco Javier Martínez Valdez División Químico Biológicas-Universidad Tecnológica de Tecámac. Tecámac, Estado de México, México. CP. 55740.
  • Gerardo Saucedo-Catañeda Departamento de Biotecnología-Universidad Autónoma Metropolitana-Unidad Iztapalapa. México. CP. 09340
  • Dimitrios Komilis Departamento de Ingeniería Ambiental-Universidad Demócrito de Tracia. Vasilissis Sofias 12, Xanthi 671 00, Grecia

DOI:

https://doi.org/10.29312/remexca.v12i7.2760

Keywords:

enzymatic activities, respirometry, aeration rate

Abstract

Microbial and enzymatic kinetics are important factors during the aerobic degradation of the organic fraction of municipal solid waste, these depend mainly on the incubation temperature and aeration rates. The objective of this research was to evaluate the process of aerobic degradation, by multiple variables and their combination to understand the interactions between aeration rates in aerobic degradation and their responses. Aeration rates were set at 0.032, 0.064, 0.125, 0.251 and 0.392 L of moist air kg-1 min-1 at 35 °C with inoculum. Microbial activity was evaluated indirectly by means of respirometry, that is, CO2 production and O2 consumption. Extracellular enzymatic activities (ie., pectinases, cellulases, xylanases and proteases) were quantified by releasing the reducing sugars. The different tests were carried out at the Metropolitan Autonomous University, Iztapalapa Unit in September 2019. Finding a strong positive relationship between xylanase and pectinase enzymatic activity and dry weight loss, along with increased cellulase and xylanase activities at higher aeration rates.

Downloads

Download data is not yet available.

References

Alef, K. and Nannipieri, P. 1995. Chapter 7-Enzyme activities. In: Methods in Applied Soil Microbiology and Biochemistry. Kassem, A.; Paolo, N. (eds). 1st Edition. Academic Press. London. 311- 373 pp.

ASTM (American Society for Testing and Materials) D5231-92. 2016. Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. ASTM International. West Conshohocken. Pensilvania. USA. 6 p. https://doi.org/10.1520/ D5231-92R16.

Bayard, R.; Gonzalez-Ramirez, L.; Guendouz, J.; Benbelkacem, H.; Buffière, P. and Gourdon, R. 2015. Statistical analysis to correlate bio-physical and chemical characteristics of organic wastes and digestates to their anaerobic biodegradability. Waste and biomass valorization. 6 (5), 759-769. https://doi.org/10.1007/s12649-015-9411-2.

Bernal, M. P.; Alburquerque, J. A. and Moral, R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review Bioresource Technology. 100(22):5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027.

Brenner, D. J. and Farmer III, J. J. 2005. Family I. Enterobacteriaceae. In: Bergey’s Manual of Systematic Bacteriology. Brenner D. J.; Krieg N. R.; Staley J. T. ; Garrity G. M.; Boone, D. R.; Vos, P.; Goodfellow, M.; Rainey, F. A. and Schleifer, K. H. (eds). 2nd ed. Springer. New York, USA. 587-607 pp. https://doi.org/10.1002/9781118960608.fbm00222.

El Achkar, J. H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R. G. and Lanoisellé, J. L. 2017. Anaerobic digestion of nine varieties of grape pomace: correlation between biochemical composition and methane production. Biomass Bioenergy. 107:335-344. https://doi.org/10.1016/j.biombioe.2017.10.030.

Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59(2):257-268. https://doi.org/10.1351/pac198759020257.

Gil, A.; Toledo, M.; Siles, J. A. and Martín, M. A. 2018. Multivariate analysis and biodegradability test to evaluate different organic wastes for biological treatments: anaerobic co-digestion and co-composting. Waste Management. 78:819-828. https://doi.org/10.1016/j.wasman. 2018.06.052.

Golias, H.; Dumsday, G. J.; Stanley, G. A. and Pamment, N. B. 2002. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and zymomonas mobilis. J. Biotechnol. 96(2):155-168. https://doi.org/10.1016/S0168-1656 (02)00026-3.

Goyal, S.; Dhull, S. K. and Kapoor, K. K. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bior. Technol. 96(14):1584-1591. https://doi.org/10.1016/j.biortech.2004.12.012.

Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y. and Shen, Y. 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bior. Technol. 112:171-178. https://doi.org/10.1016/j.biortech.2012.02.099.

He, Y.; Xie, K.; Xu, P.; Huang, X.; Gu, W.; Zhang, F. and Tang, S. 2013. Evolution of microbial community diversity and enzymatic activity during composting. Res. Microbiol. 164(2):189-198. https://doi.org/10.1016/j.resmic.2012.11.001.

Kayikçioğlu, H. H. and Okur, N. 2011. Evolution of enzyme activities during composting of tobacco waste. Waste Manag. Res. 29(11):1124-1133. https://doi.org/10.1177/0734242X 10392813.

Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Ev. 16(2):111-120. https://doi.org/10.1007/BF01731581.

Komilis, D.; Kontou, I. and Ntougias, S. 2011. A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Bior. Technol. 102(10):5863-5872. https://doi.org/10.1016/j.biortech.2011.02.021.

Kumar, S.; Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7):1870-1874. https://doi.org/10.1093/ molbev/msw054.

Lewin, G. R.; Carlos, C.; Chevrette, M. G.; Horn, H. A.; McDonald, B. R.; Stankey, R. J. and Currie, C. R. 2016. Evolution and ecology of actinobacteria and their bioenergy applications. Annual Review MicrobioL. 70:235–254. https://doi.org/10.1146/annurev-micro-102215-095748.

Li, Z.; Lu, H.; Ren, L. and He, L. 2013. Experimental and modeling approaches for food waste composting: a review. Chemosphere. 93(7):1247-1257. https://doi.org/10.1016/j. chemosphere.2013.06.064.

Liang, C.; Das, K. C. and McClendon, R. W. 2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bior. Technol. 86(2):131-137. https://doi.org/10.1016/S0960-8524 (02)00153-0.

Liu, X.; Bayard, R.; Benbelkacem, H.; Buffière, P. and Gourdon, R. 2015. Evaluation of the correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion process and their biochemical characteristics. Biom. Bioen. 81:534-543. https://doi.org/10.1016/j.biombioe.2015.06.021.

Loera, O. and Córdoba, J. 2003. Improvement of xylanase production by a parasexual cross between Aspergillus niger strains. Braz. Archiv. Biol. Technol. 46(2):177-181. https://doi.org/10.1590/S1516-89132003000200006.

Martínez-Valdez, F. J.; Martínez-Ramírez, C.; Martínez-Montiel, L.; Favela-Torres, E.; Soto-Cruz, N. O.; Ramírez-Vives, F. and Saucedo-Castañeda, G. 2015. Rapid mineralisation of the organic fraction of municipal solid waste. Bior. Technol. 180:112-118. https://doi.org/10.1016/j.biortech.2014.12.083.

Martins, S.; Mussatto, S. I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C. N. and Teixeira, J. A. 2011. Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 29(3):365-373. https://doi.org/10.1016/j. biotechadv.2011.01.008.

Mitra, S.; Khare, S. K. and Singh, R. 2010. Alkaline lipase production from Enterobacter aerogenes by solid-state fermentation of agro-industrial wastes. International Journal of Environment and Waste Management, 5 (3-4), 410-418. https://doi.org/10.1504/IJEWM.2010.032017.

Neilson, J. W.; Jordan, F. L. and Maier, R. M. 2013. Analysis of artifacts suggests EGGD should not be used for quantitative diversity analysis. J. Microbiol. Methods. 92(3):256-263.https://doi.org/10.1016/j.mimet.2012.12.021.

Puyuelo, B.; Ponsá, S.; Gea, T. and Sánchez, A. 2011. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere. 85(4):653-659. https://doi.org/10. 1016/j.chemosphere.2011.07.014.

Radojkovic, D. and Kušic, J. 2000. Silver staining of denaturing gradient gel electrophoresis gels. Clinical Chem. 46(6):883-884.

Rasapoor, M.; Nasrabadi, T.; Kamali, M. and Hoveidi, H. 2009. The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Management. 29(2):570-573. https://doi.org/10.1016/j.wasman.2008.04.012.

Raut, M. P.; Prince-William, S. P; Bhattacharyya, J. K.; Chakrabarti, T. and Devotta, S. 2008. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-a compost maturity analysis perspective. Bior. Technol. 99(14):6512-6519. https://doi.org/10.1016/j.biortech.2007.11.030.

Rodríguez-Fernández, D. E.; Rodríguez-León, J. A.; de-Carvalho, J. C.; Karp, S. G.; Sturm, W.; Parada, J. L. and Soccol, C. R. 2012. Influence of airflow intensity on phytase production by solid-state fermentation. Bior. Technol. 118:603-606. https://doi.org/10.1016/j.biortech. 2012.05.032.

Saludes, R. B.; Iwabuchi, K.; Kayanuma, A. and Shiga, T. 2007. Composting of dairy cattle manure using a thermophilic-mesophilic sequence. Biosystems Engineering. 98(2):198-205. https://doi.org/10.1016/j.biosystemseng.2007.07.003.

Saucedo-Castañeda, G.; Favela-Torres, E.; Viniegra-González, G.; Torres-Mancera, M. T.; Figueroa-Montero, A. and Rosales-Zamora, G. 2013. Respirometry system with remote management for the on-line monitoring of the concentration of CO2 and O2 and flow of the exhausting gases in biological processes. Mexican patent 336733 granted January 22 th, 2016.

Tiquia, S. M. 2002. Evolution of extracellular enzyme activities during manure composting. J. Appl. Microbiol. 92(4):764-775. https://doi.org/10.1046/j.1365-2672.2002.01582.x.

Toledo, M.; Siles, J. A.; Gutiérrez, M. C. and Martín, M. A. 2018. Monitoring of the composting process of different agroindustrial waste: Influence of the operational variables on the odorous impact. Waste Management. 76:266-274. https://doi.org/10.1016/j.wasman. 2018.03.042.

Torres-Mancera, M. T.; Figueroa-Montero, A.; Favela-Torres, E.; Rosales-Zamora, G.; Nampoothiri, K. M. and Saucedo-Castañeda, G. 2018. Online monitoring of solid-state fermentation using respirometry. In current developments in biotechnology and bioengineering. Elsevier. 97-108 pp. https://doi.org/10.1016/B978-0-444-63990-5.00006-2.

Wang, C.; Dong, D.; Wang, H.; Müller, K.; Qin, Y.; Wang, H. and Wu, W. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels. 9(1):22-31. https://doi.org/10.1186/s13068-016-0440-2.

Xu, S. Y.; Karthikeyan, O. P.; Selvam, A. and Wong, J. W. C. 2012. Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bior. Technol. 126:425-430. https://doi.org/10.1016/j.biortech.2011.12.059.

Zhang, J.; Henriksson, G. and Johansson, G. 2000. Polygalacturonase is the key component in enzymatic retting of flax. J. Biotechnol. 81(1):85-89. https://doi.org/10.1016/S0168-1656 (00)00286-8.

Published

2021-11-04

How to Cite

Carrillo-Sancen, Gabriela, Manuel Alejandro Cuautle-Marin, Francisco Javier Martínez Valdez, Gerardo Saucedo-Catañeda, and Dimitrios Komilis. 2021. “The Aeration Rate in the Aerobic Degradation of the Organic Fraction of Municipal Solid Waste”. Revista Mexicana De Ciencias Agrícolas 12 (7). México, ME:1149-59. https://doi.org/10.29312/remexca.v12i7.2760.

Issue

Section

Articles