Use of a microbial consortium from the southeast of Coahuila with potential for its application as a biofertilizer

Authors

  • Adriana Rosabel Marín-Cortez Doctorado en Ciencias en Agricultura Protegida-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Rosalinda Mendoza Villarreal Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Valentín Robledo-Torres Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila, México. CP. 25315.
  • Adalberto Benavides-Mendoza Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila, México. CP. 25315.
  • Homero Ramírez-Rodríguez Departamento de Horticultura-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila, México. CP. 25315.
  • María Laura González-Reséndiz Facultad de Ciencias-Universidad Nacional Autónoma de México. Coyoacán, , México, Ciudad de México, México. CP. 04510. AP. 70-474

DOI:

https://doi.org/10.29312/remexca.v16i30.4046

Keywords:

Bioinoculant, Bacillus, Debaryomyces, Kurtzmaniella, yeasts, Meyerozyma

Abstract

Environmental sustainability is becoming increasingly important, and in the case of agriculture, the aim is for resources to be economically sustainable, maximizing production and minimizing costs. Among the current options, biofertilizers have gained relevance as they are a promising alternative by improving plant nutrition and strengthening defenses with the use of beneficial microorganisms in the rhizosphere. Although biofertilizer production traditionally focuses on the selection, characterization, and formulation of individual isolates (strains) with desired traits to promote plant growth, evidence suggests that bioinoculants increase efficacy when using microbial communities (consortia). This work aimed to evaluate the biotechnological potential of a microbial consortium obtained from southeastern Coahuila, which was identified via massive sequencing of the 16S rRNA gene and the 18S rRNA gene and was made up mainly of the yeast genera Meyerozyma spp., Debaryomyces spp., and Kurtzmaniella spp., as well as bacteria of the genus Bacillus. The evaluation as a biofertilizer was carried out with three formulations, culture medium with consortium [Med+C] and two alternatives, molasses with consortium and culture medium plus molasses with consortium [Mel+C and Med+Mel+C]; they were evaluated under greenhouse conditions in Spinacia oleracea (spinach), and there were also a control (water) and a commercial product as treatments. The application of the different formulations, in particular Med+C, tends to increase the agronomic variables of the crop (height, stem diameter, leaf length and width, fresh weight and dry weight) and the amount of minerals (Fe, K and Cu) compared to the control treatment. The results obtained indicate that the application of microbial consortia significantly reduces the use of chemical fertilizers.

Downloads

Download data is not yet available.

References

Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology. 28(1):1327-1350.

Botha, A. 2011. The importance and ecology of yeasts in soil. Soil Biology and Biochemistry. 43(1): 1-8. DOI: https://doi.org/10.1016/j.soilbio.2010.10.001.

Coraspe-León, H. M., Muraoka, T., Franzini, V. I., De Stefano-Piedade, S. M. and do Prado-Granja, N. 2009. Absorción de macronutrientes por plantas de papa (Solanum Tuberosum L.) en la producción de tubérculo-semilla. Interciencia. 34(1):057-063. http://ve.scielo.org/scielo.php?script=sci-arttext&pid=S0378-18442009000100011&lng=es&tlng=es.

Ding, B. X.; Cao, H. X.; Bai, Y. A.; Guo, S. C.; Zhang, J. H.; He, Z. J.; Wang, B.; Jia, Z. L.; Liu, H. B. 2024. Effect of biofertilizer addition on soil physicochemical properties, biological properties, and cotton yield under water irrigation with different salinity levels in Xinjiang, China. Field Crops Research. 308(1):109300. https://doi.org/10.1016/j.fcr.2024.109300.

Fu, S. F.; Sun, P. F.; Lu, H. Y.; Wei, J. Y.; Xiao, H. S.; Fang, W. T. and Chou, J. Y. 2016. Plant growth-promoting traits of yeasts isolated from the phyllo sphere and rhizosphere of Drosera spatulata Lab. Fungal Biology. 120(3):433-448. https://doi.org/10.1016/j.funbio.2015.12.006.

Hernández-Álvarez, C.; Peimbert, M.; Rodríguez-Martin, P.; Trejo-Aguilar, D. and Alcaraz, L. D. 2023. A study of microbial diversity in a biofertilizer consortium. Plos one. 18(8):e0286285. https://doi.org/10.1371/journal.pone.0286285.

Hernández-Fernández, M.; Cordero-Bueso, G.; Ruiz-Muñoz, M. and Cantoral, J. M. 2021. Culturable yeasts as biofertilizers and biopesticides for a sustainable agriculture: a comprehensive review. Plants. 10(5):822. https://doi.org/10.3390/plants10050822.

Hoben, H. J. and Somasegaran, P. 1982. Comparison of the pour, spread and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peatt. Applied and Environ Mental Microbiology. 44(5):1246-1247. DOI: 10.1128/aem.44.5.1246-1247.1982.

Kavanagh, F. 1981. Métodos oficiales de análisis de la AOAC, 13va. Ed. Editado por William Horwitz. Asociación de químicos analíticos oficiales. Revista de Ciencias Farmacéuticas. 70(4):468.

Kumar, K.; Dasgupta, C. N. and Das, D. 2014. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology. 167(1):358-366. https://doi.org/10.1016/j.biortech.2014.05.118.

Luo, J. C.; Long, H.; Zhang, J.; Zhao, Y. and Sun, L. 2021. Characterization of a deep-sea Bacillus toyonensis isolate genomic and pathogenic features. Frontiers in Cellular and Infection Microbiology. 11(1):629116. https://doi.org/10.3389/fcimb.2021.629116.

Mashatleh, M.; Assayed, A.; Al-Hmoud, N.; Alhaj-Ali, H.; Al-Abaddi, R. and Alrwashdeh, M. 2024. Enhancing sustainable solutions for food security in Jordan: using bacterial biofertilizer to promote plant growth and crop yield. Frontiers in Sustainable Food Systems. 8(1):1423224. https://doi.org/10.3389/fsufs.2024.1423224.

Mendez, F. D.; Pintor-Ibarra, L.; Rutiaga-Quiñones, J. y Alvarado-Flores, J. 2023. Capítulo 6: análisis elemental en la biomasa con fines energéticos. Aplicaciones Energéticas de la biomasa: perspectivas para la caracterización local de biocombustibles sólidos. 117-134 pp. https://repositoriouiim.mx/xmlui/handle/123456789/141.

Milera-Rodríguez, M. C.; Alonso-Amaro, O.; Iglesias-Gómez, J. M. y Medina-Salas, R. 2024. El azufre, mineral esencial en el manejo agroecológico de los sistemas agropecuarios. Pastos y Forrajes. 47. http://ref.scielo.org/b698hp.

Muthusamy, Y.; Sengodan, K.; Arthanari, M.; Kandhasamy, R. and Gobianand, K. 2023. Biofertilizer and consortium development: an updated review. Current Agriculture Research Journal. 11(1):1-17. http://dx.doi.org/10.12944/CARJ.11.1.01.

Odoh, C. K.; Sam, K.; Zabbey, N.; Eze, C. N.; Nwankwegu, A. S. and Laku, C. and Dumpe, B. B. 2020. Microbial consortium as biofertilizers for crops growing under the extreme habitats. Plant Microbiomes for Sustainable Agriculture. 381-424 pp. http://dx.doi.org/10.1007/978-3-030-38453-1-13.

Pirttilä, A. M.; Mohammad-Parast, T. H.; Baruah, N. and Koskimäki, J. J. 2021. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms. 9(4):817. https://doi.org/10.3390/microorganisms9040817.

Rennie, R. J. 1981. A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Canadian Journal of Microbiology. 27(1):8-14. https://doi.org/10.1139/m81-002.

Robas-Mora, M.; Fernández-Pastrana, V. M.; Probanza-Lobo, A. and Jiménez-Gómez, P. A. 2022. Valorization as a biofertilizer of an agricultural residue leachate: Metagenomic characterization and growth promotion test by PGPB in the forage plant Medicago sativa (alfalfa). Frontiers in Microbiology. 13(1):1048154. https://doi.org/10.3389/fmicb.2022.1048154.

Romero‐Cuadrado, L.; Picos, M. C.; Camacho, M.; Ollero, F. J. and Capote, N. 2024. Biocontrol of almond canker diseases caused by Botryosphaeriaceae fungi. Pest Management Science. 80(4):1839-1848. https://doi.org/10.1002/ps.7919.

Safdar, H.; Jamil, M.; Hussain, A.; Albalawi, B. F. A.; Ditta, A.; Dar, A. and Ahmad, M. 2022. The effect of different carrier materials on the growth and yield of spinach under pot and field experimental conditions. Sustainability. 14(19):12255. https://doi.org/10.3390/su141912255.

Sevillano-Caño, J.; García, M. J.; Córdoba-Galván, C.; Luque-Cruz, C.; Agustí-Brisach, C.; Lucena, C. and Romera, F. J. 2024. Exploring the role of Debaryomyces hansenii as biofertilizer in iron-deficient environments to enhance plant nutrition and crop production sustainability. International Journal of Molecular Sciences. 25(11):5729. https://doi.org/10.3390/ijms25115729.

Seymen, M. 2021. Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turkish Journal of Agriculture and Forestry. 45(1):55-67. https://doi.org/10.3906/tar-2004-79.

Shafeek, M. R.; Mahmoud, A. R.; Helmy, Y. I.; Omar, N. M. and El-Dewiny, C. Y. 2021. Middle east journal of agriculture research. 10(2):483-492. https://doi.org/10.36632/mejar/2021.10.1.12.

Vassilev, N.; Vassileva, M.; Lopez, A.; Martos, V.; Reyes, A.; Maksimovic, I. and Malusa, E. 2015. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Applied Microbiology and Biotechnology. 99(12):4983-4996. https://doi.org/10.1007/s00253-015-6656-4.

Yadav, A. and Yadav, K. 2024. Desafíos y oportunidades en la comercialización de biofertilizantes. SVOA Microbiol. 5(1):1-14. http://dx.doi.org/10.58624/SVOAMB.2024.05.037.

Zhang, J.; He, N.; Liu, C.; Xu, L.; Chen, Z.; Li, Y. and Reich, P. B. 2020. Variation and evolution of C: N ratio among different organs enable plants to adapt to N‐limited environments. Global Change Biology. 26(4):2534-2543. https://doi.org/10.1111/gcb.14973.

Zhang, L.; Chen, F.; Zeng, Z.; Xu, M.; Sun, F.; Yang, L. and Xie, Y. 2021. Advances in metagenomics and their application in environmental microorganisms. Frontiers in Microbiology. 12:766364. https://doi.org/10.3389/fmicb.2021.766364.

Published

2025-10-14

How to Cite

Marín-Cortez, Adriana Rosabel, Rosalinda Mendoza Villarreal, Valentín Robledo-Torres, Adalberto Benavides-Mendoza, Homero Ramírez-Rodríguez, and María Laura González-Reséndiz. 2025. “Use of a Microbial Consortium from the Southeast of Coahuila With Potential for Its Application As a Biofertilizer”. Revista Mexicana De Ciencias Agrícolas 16 (30). México, ME:e4046. https://doi.org/10.29312/remexca.v16i30.4046.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>