Determination of physical and physiological quality in seeds from sorghums evaluated in the Bajío

Authors

  • Jaime Cruz Rodríguez Gómez Colegio de Postgraduados

DOI:

https://doi.org/10.29312/remexca.v16i7.3853

Keywords:

Sorghum bicolor (L.) Moench, physical quality, physiological quality, standard germination test, vigor test by accelerated aging

Abstract

For a seed to be considered of high quality, its attributes of physical, physiological, and genetic purity must be in balance; therefore, it is vitally important to evaluate it through scientific criteria for its production and marketing. In the Seed Analysis Laboratory of the Seed Production Program of the College of Postgraduates, Montecillo Campus, in 2022, the moisture content, volumetric weight, and weight of 1000 seeds were determined and a standard germination test was established with the aim of determining the physical and physiological quality in seeds of sorghums grown during the autumn-winter agricultural cycle of 2021 in the Bajío Experimental Field of INIFAP. Physical and physiological quality parameters were evaluated using a completely randomized design. The statistical analysis was performed using an analysis of variance and Tukey’s test ≤0.5, with the RStudio 4.3.3 statistical package. The cultivars ET-V5 (78.74 g) and Súper Sorgo 35 (38.5 g) presented the highest values in terms of the variables volumetric weight and weight of 1 000 seeds, respectively. The Silo Máster cultivar showed the highest values for germination percentage and viability percentage (82.75 and 86.25%), respectively. The cultivars ET-V5, Súper Sorgo 09, and Súper Sorgo 35 presented the best physical quality in seeds among the materials evaluated. Silo Máster surpassed the other cultivars evaluated, obtaining the highest values in terms of physiological quality in seeds. The seeds of the commercial hybrids with forage purpose had better physical and physiological quality than the experimental varieties of dual purpose, forage-ethanol, with the cultivars Silo Máster, Súper Sorgo 09, Súper Sorgo 35, and ET-V5, standing out.

Downloads

Download data is not yet available.

References

Almekinders, C. J. M. and Louwaars, N. P. 1999. Farmers’ seed production: new approaches and practices. Intermediate Technology Publications, London. 250-285 pp.

Batista, V. A. P.; Vieira, H. D.; Pires, J. I. C. and Acha, A. J. 2022. Sorghum seed coating with zinc: Physiological quality and initial performance of plants. Acta Scientiarum. Agronomy. 44(1):e53803. https://doi.org/10.4025/actasciagron.v44i1.53803.

Bishaw, Z.; Niane, A. A. and Gan, Y. 2007. Quality seed production. Lentil: an ancient crop for modern times. 349-383 pp.

Bravo, B. D. A.; Pacheco, F. A.; Pérez, J. J. R.; Mesa, R. R.; Yánez, J. C. O. and Salvatierra, J. B. 2021. Comportamiento agronómico y productivo de híbridos de sorgo (Sorghum bicolor L. Moench) en zonas agroecológicas de la Región Costa del Ecuador. Revista Científica Agroecosistemas. 9(3):168-178.

Caddel, J. L. and Weibel, D. E. 1971. Effect of photoperiod and temperature on the development of sorghum. Agronomic Journal. 6(3):799-803.

Camargo, C. P. and Vaughan, C. E. 1973. Effect of seed vigor on field performance and yield of grain sorghum (Sorghum bicolor (L.) Moench). Proceedings of the Association of Official Seed Analysts. 63:135-147.

Córdova-Téllez, L.; Caballero-García, M. A.; Hernández-Nicolás, N. Y. and Ríos-Santos, E. 2019. Boletín informativo de producción de semilla calificada por el SNICS. 25-43 pp.

Craufurd, P. Q.; Mahalakshmi, V.; Bidinger, F. R.; Mukuru, S. Z.; Chantereau, J.; Omanga, P. A.; Qi, A.; Roberts, E. H.; Ellis, R. H.; Summerfield, R. J. and Hammer, G. L. 1999. Adaptation of sorghum: characterization of genotypic flowering responses to temperature and photoperiod. Theory Applied Genetic. 99(5):900-911.

Delouche, J. C. 1980. Environmental effects on seed development and seed quality. Hort Science. 15(6):13-18.

FAO. 2022. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Cultivos y productos de ganadería. https://www.fao.org/faostat/es/#data/QCL.

Gerik, T. J.; Miller, F. R. 1984. Photoperiod and temperature effects on tropically and temperatelyadapted sorghum. Field Crops Res. 9:29-40.

Hammer, G. L.; Van Oosterom, E. V.; McLean, G.; Chapman, S. C.; Broad, I.; Harland, P. and Muchow, R. C. 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 61(8):2185-2202.

Hammer, G. L.; Vanderlip, R. L.; Gibson, G.; Wade, L. J.; Henzell, R. G.; Younger, D. R.; Warren, J. and Dale, A. B. 1989. Genotype-by-environment interaction in grain sorghum II. Effects of temperature and photoperiod on ontogeny. Crop Science. 29:376-384.

House, L. R. 1985. A guide to sorghum breeding, 2nd Ed. ICRISAT, Patancheru. 206 p.

INIFAP. 2010. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro de Investigación Regional del Noreste-Campo Experimental Río Bravo. Folleto técnico núm. 43. 13-25 pp. ISBN: 978-607-425-355-9.

ISTA. 2015. International Seed Testing Association. International rules for seed testing. Published by The International Seed Testing Association. PO. BOX 308, 8303 Bassersdorf, CH-Switzerland. 243 p.

Muui, C. W.; Muasya, R. M.; Nguluu, S. y Kambura, A. 2020. Evaluation of seed quality attributes of sorghum germplasm accessions from eastern, coastal and Nyanza regions, Kenya. Sustainable Agriculture Research. 9(3):1-9. https://doi.org/10.5539/sar.v9n3p9.

Orr, A.; Mwema, C.; Gierend, A. and Nedumaran, S. 2016. Sorghum and millets in Eastern and Southern Africa. Facts, trends and outlook. Working Paper Series No. 62. ICRISAT Research Program, Markets, Institutions and Policies. International Crops Research Institute for the Semi-Arid Tropics, Patancheru. 76 p.

Pecina-Becerril, A.; Yáñez-López, R.; Quijano-Carranza, J. A.; Bujanos-Muñiz, R.; Andrio-Enriquez, E. y Pecina-Quintero, V. 2021. Producción y calidad de la semilla de sorgo en el Centro de México bajo polinización controlada: comportamiento de progenitores de sorgo. Ciencia y Tecnología Agropecuaria. 23(1):20-79. https://doi.org/10.21930/rcta.vol23-num1-art:2079.

Quinby, J. R.; Hesketh, J. D. and Voigt, R. L. 1973. Influence of temperature and photoperiod on floral initiation and leaf number in sorghum. Crop Science. 13(2):243-246.

Reynolds, M. P.; Quilligan, E.; Aggarwal, P. K.; Bansal, K. C.; Cavalieri, A. J.; Chapman, S.; Chapotin, S. M.; Datta, S. K.; Duveiller, E.; Gill, K. S.; Krishna, S. V. J.; Joshi, A. K.; Koehler, A. K.; Kosina, P.; Krishnan, S.; Lafitte, R.; Mahala, R. S.; Muthurajan, R.; Paterson, A. H.; Prasanna, B. M.; Rakshit, S.; Rosegrant, M. W.; Sharma, I.; Singh, R. P.; Sivasankar, S.; Vadez, V.; Ravi, V.; Vara-Prasad, P. V. and Yadav, O. P. 2016. An integrated approach to maintaining cereal productivity under climate change. Glob Food Sec. 8:9-18.

Rodrígues, G. B.; Resende, O.; Silva, L. C. D. M. and Ferreira-Junior, W. N. 2020. Physiological quality of graniferous sorghum seeds during storage. Research, Society and Development. 9(6):e27963152. https://doi.org/10.33448/rsd-v9i6.3152.

RStudio Team. 2020. RStudio: integrated development environment for R. Boston, MA: RStudio, PBC. http://www.rstudio.com/.

Ruiz-Sánchez, M.; Muñoz-Hernández, Y.; Guzmán, D.; Velázquez-Rodríguez, R.; Díaz-López, G. S.; Martínez, A. Y. y Almeida, F. M. 2018. Efecto del calibre semilla (masa) en la germinación del sorgo. Cultivos Tropicales. 39(4):51-59.

SIAP. 2023. Servicio de Información Agroalimentaria y Pesquera. Anuario estadístico de la producción agrícola. Secretaría de Agricultura y Desarrollo Rural. Ciudad de México. https://nube.siap.gob.mx/cierreagricola/.

Published

2025-11-11

How to Cite

Rodríguez Gómez, Jaime Cruz. 2025. “Determination of Physical and Physiological Quality in Seeds from Sorghums Evaluated in the Bajío”. Revista Mexicana De Ciencias Agrícolas 16 (7). México, ME:e3853. https://doi.org/10.29312/remexca.v16i7.3853.

Issue

Section

Articles