Nutraceutical analysis of fig cv. Nezahualcóyotl dehydrated by osmo-convection

Authors

  • José Eduardo De la Sancha-Coria Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264, Tel. 55 58045900
  • Yolanda Leticia Fernández-Pavía Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264, Tel. 55 58045900
  • José Luis García-Cue Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264, Tel. 55 58045900
  • María Teresa Beryl Colinas-León Departamento de Fitotecnia-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, México. CP. 56230. Tel. 595 9521542
  • Alfonso Muratalla-Lúa Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56264, Tel. 55 58045900

DOI:

https://doi.org/10.29312/remexca.v16i6.3794

Keywords:

Ficus carica L., bioactive compounds, cv. Nezahualcóyotl, osmosis

Abstract

This research aimed to analyze the nutraceutical properties of fig (Ficus Carica L.) cv. Nezahualcóyotl dehydrated by osmo-convection. Due to the limited information on this variety in Mexico, the impact of the dehydration method on the bioactive compounds of the fruit was evaluated. The study was conducted in Texcoco, State of Mexico in 2024, using 120 fig plants under organic production. Thirty-six fruits were randomly taken and subjected to osmotic dehydration with sucrose concentrations of 0, 40, 50 and 60%, followed by convective dehydration at temperatures of 50, 60 and 70 °C. A completely randomized design was established, where the data were analyzed through Anova, Duncan tests or Kruskal-Wallis non-parametric tests according to the nature of the variables. The results showed that figs osmotically dehydrated with sucrose concentrations of 40-50% and convective temperatures of 50-60 °C presented the highest retention of total phenols, reaching values of up to 1 652.96 mg tannins g-1 fresh weight. In addition, antioxidant capacity increased by 54% compared to fresh figs, whereas vitamin C underwent significant degradation at temperatures above 60 °C. These findings provide information on the Nezahualcóyotl fig variety and suggest that the combination of osmotic and convective dehydration is an effective strategy to conserve and enhance nutraceutical properties that can have an agro-industrial and commercial impact.

Downloads

Download data is not yet available.

References

Andreou, V.; Thanou, I.; Giannoglou, M.; Giannakourou, M. C. and Katsaros, G. 2021. Dried Figs Quality Improvement and process energy savings by combinatory application of osmotic pretreatment and conventional air drying. Foods. 10(8):2-8. https://doi.org/10.3390/foods10081846.

Bezerra Pessoa, T. R.; Lima, A. G. B.; Martins, P. C.; Pereira, V. C.; Alves, T. C. O.; Silva, E. S. and Lima, E. S. 2021. Osmo-convective dehydration of fresh foods: theory and applications to cassava cubes. In: Delgado, J. M. P. Q. and Barbosa, de L. A. G. Ed. Transport Processes and Separation Technologies. 151-183 pp. https://doi.org/10.1007/978-3-030-47856-8-6.

de Mello Jr, R. E.; Corrêa, J. L. G.; Lopes, F. J.; de Souza, A. U. and da Silva, K. C. R. 2019. Kinetics of the pulsed vacuum osmotic dehydration of green fig (Ficus carica L.). Heat and Mass Transfer. 55(6):1685-1691. https://doi.org/10.1007/s00231-018-02559-w.

Fernandes, F. A. N.; Linhares, F. E. and Rodrigues, S. R. 2008. Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry. 15(6):1049-1054. https://doi.org/10.1016/j.ultsonch.2008.03.009.

Fernandez, J. I. 2016. Caracterización química y morfológica de ocho ecotipos de higo (Ficus carica L.). 1-10 pp. http://ri.uaemex.mx/handle/20.500.11799/65163.

Fernández-Pavía, Y. L.; García-Cue, J. L.; Fernández-Pavía, S. P. y Muratalla-Lua, A. 2020. Deficiencias nutrimentales inducidas en higuera cv. Neza en condiciones hidropónicas. Revista Mexicana de Ciencias Agrícolas. 11(3):581-592. https://cienciasagricolas.inifap.gob.mx/index.php/agricolas/article/view/2073.

Hosseini, E.; Tsegay, Z. T.; Smaoui, S. and Varzakas, T. 2024. Chemical structure, composition, bioactive compounds, and pattern recognition techniques in figs (Ficus carica L.) quality and authenticity: an updated review. Journal of Food Composition and Analysis. v.137, 106863. 10.1016/j.jfca.2024.106863.

Hajam, T. A. and Saleem, H. 2022. Phytochemistry, biological activities, industrial and traditional uses of fig (Ficus carica): a review. Chemico-Biological Interactions. v. 368, 110237, 2-4 pp. 10.1016/j.cbi.2022.110237.

INTAGRI. 2020. Producción de higo en México. Intagri S.C. www.inagri.com. https://www.intagri.com/articulos/frutales/produccion-de-higo-en-mexico.

Landim, A. P. M.; Barbosa, M. I. M. J. and Júnior, J. L. B. 2016. Influence of osmotic dehydration on bioactive compounds, antioxidant capacity, color and texture of fruits and vegetables: a review. Ciência Rural. 46(10):1714-1722. https://doi.org/10.1590/0103-8478cr20150534.

Lansky, E. P. and Paavilainen, H. M. 2010. Figs: the genus ficus. In: figs: the genus Ficus. 366 p. https://doi.org/10.1201/9781420089677.

Lee, S. K. and Kader, A. A. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology. 20(3):207-220. https://www.sciencedirect.com/science/article/abs/pii/S0925521400001332.

López, E. J.; Uribe, U. E.; Vega-Gálvez, A.; Miranda, H. M.; Vergara, J. J.; Gonzalez, M. E. and Di Scala, K. C. 2010. Effect of air temperature on drying kinetics, vitamin c, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety o´neil. Food and Bioprocess Technology. 3(5):772-777. https://doi.org/10.1007/s11947-009-0306-8.

Mandala, I. G.; Anagnostaras, E. F. and Oikonomou, C. K. 2005. Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. Journal of Food Engineering. 69(3):307-316. https://doi.org/10.1016/j.jfoodeng.2004.08.021.

Moustafa, S. E.; Abed-Hakim, H. I. and Maatouk, H. I. 2016. Osmotic dehydration of fig and plum. Egyptian Journal of Agricultural Research. 94(4):905-921. https://doi.org/10.21608/ejar.2016.153140.

Pandidurai, G. and Vennila, P. 2020. Processing, value addition and effect of nutritional quality of fig fruit by osmatic dehydration. International Journal of Chemical Studies. 8(4):3644-3647. https://doi.org/10.22271/chemi.2020.v8.i4at.10213.

SIAP. 2023. Sistema de información agroalimentaria y pesquera. Higo. 1 p. https://www.gob.mx/cms/uploads/attachment/file/874025/Higo-monografi-a-2023.pdf.

Slatnar, A.; Klancar, U.; Stampar, F. and Veberic, R. 2011. Effect of drying of figs (Ficus Carica L.) on the contents of sugars, organic acids, and phenolic compounds. Journal of agricultural and food chemistry. 59(21):11696-11702. https://doi.org/10.1021/jf202707y.

Vega-Gálvez, A.; Palacios, M. P.; Boglio, H. F.; Pássaro, C. C.; Jeréz, M. C. y Lemus-Mondaca, R. 2007. Deshidratación osmótica de la papaya chilena (Vasconcellea pubescens) e influencia de la temperatura y concentración de la solución sobre la 15 de transferencia de materia. Food Science and Technology. 27(3):470-477. https://doi.org/10.1590/S0101-20612007000300008.

Yadav, R. K. and Dubey, R. S. 2019. Sulfur-induced oxidative stress in crop plants: Responses and tolerance mechanisms. Plant Signaling & Behavior, 14(5):1568974. https://www.tandfonline.com/doi/full/10.1080/15476286.2019.1568974.

Published

2025-09-15

How to Cite

De la Sancha-Coria, José Eduardo, Yolanda Leticia Fernández-Pavía, José Luis García-Cue, María Teresa Beryl Colinas-León, and Alfonso Muratalla-Lúa. 2025. “Nutraceutical Analysis of Fig Cv. Nezahualcóyotl Dehydrated by Osmo-Convection”. Revista Mexicana De Ciencias Agrícolas 16 (6). México, ME:e3794. https://doi.org/10.29312/remexca.v16i6.3794.

Issue

Section

Articles

Most read articles by the same author(s)