Hydrothermal treatment affects the ascorbic acid content and other quality parameters in ‘Ataulfo’ mango

Authors

  • Armida Andrea Gil-Salido Centro de Investigación en Alimentación y Desarrollo, AC-Laboratorio de Genética y Biología Molecular de Plantas. Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, Hermosillo, Sonora, México. CP. 83304
  • Ana Paulina Sortillón-Sortillón Centro de Investigación en Alimentación y Desarrollo, AC-Laboratorio de Genética y Biología Molecular de Plantas. Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, Hermosillo, Sonora, México. CP. 83304
  • Rosalba Contreras-Martínez Centro de Investigación en Alimentación y Desarrollo, AC-Unidad Culiacán. Culiacán, Sinaloa, México. CP. 80110
  • Tomás Osuna-Enciso Centro de Investigación en Alimentación y Desarrollo, AC-Unidad Culiacán. Culiacán, Sinaloa, México. CP. 80110
  • Manuel Alonzo Báez-Sañudo Centro de Investigación en Alimentación y Desarrollo, AC-Unidad Culiacán. Culiacán, Sinaloa, México. CP. 80110
  • María Auxiliadora Islas-Osuna Centro de Investigación en Alimentación y Desarrollo, AC-Laboratorio de Genética y Biología Molecular de Plantas. Carretera Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, Hermosillo, Sonora, México. CP. 83304

DOI:

https://doi.org/10.29312/remexca.v15i3.3672

Keywords:

Mangifera indica, heat stress, gene expression, ripening

Abstract

L-ascorbic acid is a natural antioxidant produced by plants and their fruits. The abundance of this acid during the development and postharvest ripening of mangoes (Mangifera indica L.) depends on genetic and climatic factors. The mangoes undergo a quarantine hydrothermal treatment before being exported to control the fruit fly. A quarantine hydrothermal treatment consists of immersing mangoes in water at 46.1 °C (118 °F) for 60 to 120 min depending on the size, affecting the L-ascorbic acid content and other quality parameters of the fruit. This research aimed to evaluate the effect of QHT on L-ascorbic acid content, firmness, color, and expression of L-ascorbic acid biosynthesis and recycling genes during mango postharvest. ‘Ataulfo’ mangoes were harvested at physiological ripeness in Escuinapa, Sinaloa in 2019, subjected to QHT (46.1 °C, 75 min), hydrocooled (25 °C, 30 min) and stored at 20 °C for nine days. Mangoes subjected to QHT showed a reduction in L-ascorbic acid content (p≤ 0.05). The firmness of the pulp behaved similarly in fruits with QHT and in control fruits, while the external color of the fruits with a quarantine hydrothermal treatment indicated an advanced ripening process compared to the control fruits (p≤ 0.05). The levels of MiGME1, MiGME2, MiGGP2, and MiMDHAR transcripts increased in response to treatment, suggesting activation of the synthesis and recycling pathway to counteract the abiotic stress caused by the heat to which the mangoes were subjected.

Downloads

Download data is not yet available.

References

Bulley, S. and Laing, W. 2016. The regulation of ascorbate biosynthesis. Curr. Opin. Plant Biol. 33(1):15-22. https://doi.org/10.1016/j.pbi.2016.04.010.

Cárdenas-Coronel, W. G.; Velez-De La Rocha, R.; Siller-Cepeda, J. H.; Osuna-Enciso, T.; Muy-Rangel, M. D. and Sañudo-Barajas, J. A. 2012. Changes in the composition of starch, pectins and hemicelluloses during the ripening stage of mango (Mangifera indica cv. Kent). Rev. Chapingo, Ser. Hortic. 18(1):5-19.

Castillo-Velarde, E. R. 2019. Vitamina C en la salud y en la enfermedad. Revista de la Facultad de Medicina Humana.19(4):95-100. Doi.org/10.25176/rfmh.v19i4.2351.

Chiaiese, P.; Corrado, G.; Minutolo, M.; Barone, A. and Errico, A. 2019. Transcriptional regulation of ascorbic acid during fruit ripening in pepper (Capsicum annuum) varieties with low and high antioxidants content. Plants. 8(7):1-12. Doi.org/10.3390/plants8070206.

Contreras-Vergara, C.; Gil-Salido, A.; Sañudo-Barajas, A.; Osuna-Encino, T. e Islas-Osuna, M. 2022. Bases bioquímicas y moleculares de la calidad postcosecha de frutos de mango (Mangifera indica L.). In: tecnología, ingeniería y biotecnología de alimentos de origen vegetal: aprovechamiento de sus subproductos. Ed. Distribuidora Académica Libertad Mexicana. 344-349 pp.

Dautt-Castro, M.; Ochoa-Leyva, A.; Contreras-Vergara, C. A.; Muhlia-Almazán, A.; Rivera-Domínguez, M.; Casas-Flores, S.; Martínez-Téllez, M. A.; Sañudo-Barajas, A.; Osuna-Enciso, T.; Báez-Sañudo, M. A.; Quiroz-Figueroa, F. R.; Kuhn, D. N. and Islas-Osuna, M. A. 2018. Mesocarp RNA-Seq analysis of mango (Mangifera indica L.) identify quarantine postharvest treatment effects on gene expression. Sci. Hortic. (Amsterdam). 227(1):146-153. Doi.org/10.1016/j.scienta.2017.09.031.

Djioua, T.; Charles, F.; Lopez-Lauri, F.; Filgueiras, H.; Coudret, A.; Freire, Jr. M.; Ducamp-Collin, M. N. and Sallanon, H. 2009. Improving the storage of minimally processed mangoes (Mangifera indica L.) by hot water treatments. Postharvest Biol. Technol. 52(2):221-226. Doi.org/10.1016/j.postharvbio.2008.10.006.

Doner, L. W. and Hicks, K. B. 1981. High performance liquid chromatographic separation of ascorbic acid, erythorbic acid, dehydroascorbic acid, dehydroerythorbic acid, diketogulonic acid, and diketogluconic acid. Anal. Biochem. 115(1):225-230. Doi.org/10.1016/0003-2697(81)90550-9.

Dowdle, J.; Takahiro, I.; Stephan, G.; Susanne, R. and Nicholas, S. 2007. Two genes in arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant journal. 52(4):673-89. https://doi.org/10.1111/j.1365-313X.2007.03266.x.

Eltelib, H. A.; Badejo, A. A.; Fujikawa, Y. and Esaka, M. 2011. Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). J. Plant Physiol. 168(6):619-627. Doi.org/10.1016/j.jplph.2010.09.003.

Fenech, M.; Amaya, I.; Valpuesta, V. and Botella, M. A. 2019. Vitamin C content in fruits: biosynthesis and regulation. Frontiers in Plant Science. 9(1):1-21. Doi.org/10.3389/fpls.2018.02006.

Galli, V.; Messias, R. S.; Guzman, F.; Perin, E. C.; Margis, R. and Rombaldi, C. V. 2019. Transcriptome analysis of strawberry (Fragaria × ananassa) fruits under osmotic stresses and identification of genes related to ascorbic acid pathway. Physiol. Plant. 166(4):979-995. Doi.org/10.1111/ppl.12861.

Hernández, E.; Rivera, P.; Bravo, B.; Toledo, J.; Caro-Corrales, J. and Montoya, P. 2012. Hot-water phytosanitary treatment against Ceratitis capitata (Diptera: tephritidae) in ‘Ataulfo’ mangoes. J. Econ. Entomol. 105(6):1940-1953. Doi.org/10.1603/EC 11239.c

Ibarra-Garza, I. P.; Ramos-Parra P. A.; Hernández-Brenes, C. and Jacobo-Velázquez, D. A. 2015. Effects of postharvest ripening on the nutraceutical and physicochemical properties of mango (Mangifera indica L. cv. Keitt). Postharvest biology and technology. 103(1):45-54. Doi.org/10.1016/j.postharvbio.2015.02.014.

Javed, S.; Fu, H.; Ali, A.; Nadeem, A.; Amim, M.; Razzaq, K.; Ullah, S.; Rajwana, I.; Nayab, S.; Ziogas, V.; Liu, P. and Hussain, S. B. 2022. Comparative response of mango fruit towards pre and post storage quarantine heat treatments. Agronomy. 12(6):1476. Doi.org/10.3390/agronomy12061476.

Jiang, M.; Liu, Y.; Ren, L.; She, X. and Chen, H. 2018. Light regulates ascorbic acid accumulation and ascorbic acid related genes expression in the peel of eggplant. South African J. Bot. 114(1):20-28. Doi.org/10.1016/j.sajb.2017.10.012.

Konica Minolta. 2007. Precise color communication, color control from perception to instrumentation. Konica Minolta Sensing Inc., Japan. 12-18 pp.

Li, H.; Huang, W.; Wang, G. L.; Wu, Z. J. and Zhuang, J. 2016. Expression profile analysis of ascorbic acid related genes in response to temperature stress in the tea plant, Camellia sinensis (L.) O. Kuntze. Genet. Mol. Res. 15(1):1-10. Doi.org/10.4238/gmr.15048756.

Li, J.; Liang, D.; Li, M. and Ma, F. 2013. Light and abiotic stresses regulate the expression of GDP-l galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light responsive and stress inducible cis elements in their promoters. Planta. 238(1):535-547. Doi.org/10.1007/s00425-013-1915-z.

Liu, X.; Wu, R.; Bulley, S. M.; Zhong, C. and Li, D. 2022. Kiwifruit MYBS1‐like and GBF3 transcription factors influence l-ascorbic acid biosynthesis by activating transcription of GDP‐L‐galactose Phosphorylase 3. New phytologist. 234(5):1782-1800. Doi.org/10.1111/nph.18097.

López-Gómez, R. and Gómez-Lim, M. A. 2019. A method for extracting intact rna from fruits rich in polysaccharides using ripe mango mesocarp. HortScience. 27(5):440-442. Doi.org/10.21273/hortsci.27.5.440.

Luna-Esquivel, G.; Arévalo-Galarza, M.; Anaya-Rosales, S.; Villegas-Monter, A.; Acosta-Ramos, M. y Leyva-Ruelas, G. 2006. Calidad de mango ‘Ataulfo’ sometido a tratamiento hidrotérmico. Rev. Fitotec. Mex. 29(Esp2):123-128.

Macknight, R. C.; Laing, W. A.; Bulley, S. M.; Broad, R. C.; Johnson, A. A. and Hellens, R. P. 2017. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Curr. Opin. Biotechnol. 44(1):153-160. Doi.org/10.1016/j.copbio.2017.01.011.

Manthey, J. A. and Perkins-Veazie, P. 2009. Influences of harvest date and location on the levels of β-carotene, ascorbic acid, total phenols, the in vitro antioxidant capacity, and phenolic profiles of five commercial varieties of mango (Mangifera indica L.). J. Agric. Food Chem. 57(22):10825-10830. Doi.org/10.1021/jf902606h.

Mditshwa, A.; Magwaza, L. S.; Tesfay, S. Z. and Opara, U. L. 2017. Postharvest factors affecting vitamin C content of citrus fruits: a review. Sci. Hortic. (Amsterdam). 218(1):95-104. Doi.org/10.1016/j.scienta.2017.02.024.

Mellidou, I. and Kanellis, A. K. 2017. Genetic control of ascorbic acid biosynthesis and recycling in horticultural crops. Front. Chem. 5(1):1-8. Doi.org/10.3389/fchem. 2017.00050.

Mellidou, I.; Keulemans, J.; Kanellis, A. K. and Davey, M. W. 2012. Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol. 12(1):1-19. https://doi.org/10.1186/1471-2229-12239.

Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L. and De Pinto, M. C. 2019. Vitamin C in plants: from functions to biofortification. Antioxidants. 8(11):519. https://doi.org/10.3390/antiox8110519.

Robles-Sánchez, R. M.; Rojas-Graü, M. A.; Odriozola-Serrano, I.; González-Aguilar, G. A. and Martín-Belloso, O. 2009. Effect of minimal processing on bioactive compounds and antioxidant activity of fresh cut ‘Kent’ mango (Mangifera indica L.). Postharvest Biol. Technol. 51(3):384-390. Doi.org/10.1016/j.postharvbio. 2008.09.003.

Schmittgen, T. D. and Livak, K. J. 2008. Analyzing real time PCR data by the comparative CT method. Nat. Protoc. 3(6):1101-1108. Doi.org/10.1038/nprot.2008.73.

Siller-Cepeda, J.; Muy-Rangel, D.; Baéz-Sañudo, M.; Araiza-Lizarde, E. and Ireta-Ojeda, A. 2009. Postharvest quality of mango cultivars of early, middle, and late seasons. Rev. Fitotec. Mex. 32(1):45-52. Doi.org/10.35196/rfm.2009.1.45-52.

Smirnoff, N. 2018. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free radical biology and medicine. 122(1):116-29. Doi.org/10.1016/j. freeradbiomed.2018.03.033.

Tao, J.; Wu, H.; Li, Z.; Huang, C. and Xu, X. 2018. Molecular evolution of GDP-D mannose epimerase (GME ), a key gene in plant ascorbic acid biosynthesis. 9(1):1293. Doi.org/10.3389/fpls.2018.01293.

USDA, 2017. Unites States Department of Agriculture. Animal and Plant Health Inspection Service. Plant protection and quarantine. Treatment manual. https://www.aphis. usda.gov/aphisplanthealth/complete-list-of-electronic-manuals.

Wang, P.; Wang, F. and Yang, J. 2017. De novo assembly and analysis of the Pugionium cornutum (L.) Gaertn. Transcriptome and identification of genes involved in the drought response. Gene. 626(1):290-297. Doi.org/10.1016/j.gene.2017.05.053.

Wang, Q. L.; Chen, J. H.; He, N. Y. and Guo, F. Q. 2018. Metabolic reprogramming in chloroplasts under heat stress in plants. Int. J. Mol. Sci. 19(3):849. Doi.org/10.3390 /ijms19030849.

Wheeler, G. L.; Jones, M. A. and Smirnoff, N. 1998. The biosynthetic pathway of vitamin C in higher plants. Nature. 393(6683):365-369. Doi.org/10.1038/30728.

Zhang, C.; Huang, J. and Li, X. 2016. Transcriptomic analysis reveals the metabolic mechanism of l ascorbic acid in Ziziphus jujuba mill. Front. Plant Sci. 7(1):122. Doi.org/10.3389/fpls.2016.00122.

Zhang, J. Y.; Pan, D. L.; Jia, Z. H.; Wang, T.; Wang, G. and Guo, Z. R. 2018. Chlorophyll, carotenoid and vitamin C metabolism regulation in actinidic chinensis ‘hongyang’ outer pericarp during fruit development. PloS One. 13(3):1-17. Doi.org/10.1371/ journal.pone.0194835.

Published

2024-05-10

How to Cite

Gil-Salido, Armida Andrea, Ana Paulina Sortillón-Sortillón, Rosalba Contreras-Martínez, Tomás Osuna-Enciso, Manuel Alonzo Báez-Sañudo, and María Auxiliadora Islas-Osuna. 2024. “Hydrothermal Treatment Affects the Ascorbic Acid Content and Other Quality Parameters in ‘Ataulfo’ Mango”. Revista Mexicana De Ciencias Agrícolas 15 (3). México, ME:e3672. https://doi.org/10.29312/remexca.v15i3.3672.

Issue

Section

Articles

Most read articles by the same author(s)