Fatty acid profile of forage shrubs in northern Mexico

Authors

  • Jonathan Raúl Garay Martínez Campo Experimental Huasteca-INIFAP. Altamira, Tamaulipas, México
  • Jorge Alonso Maldonado Jáquez Campo Experimental La Laguna-INIFAP. Matamoros, Coahuila, México
  • Yuridia Bautista Martínez Facultad de Medicina Veterinaria y Zootecnia ‘Norberto Treviño Zapata’-Universidad Autónoma de Tamaulipas. Ciudad Victoria, Tamaulipas, México
  • Francisco Antonio Cigarroa Vázquez Escuela de Estudios Agropecuarios Mezcalapa-Universidad Autónoma de Chiapas. Copainalá, Tuxtla Gutiérrez, Chiapas, México
  • Sandra Patricia Maciel Torres Unidad Regional Universitaria de Zonas Áridas-Universidad Autónoma Chapingo. Bermejillo, Durango, México
  • Lorenzo Danilo Granados Rivera Campo Experimental General Terán-INIFAP. General Terán, Nuevo León, México

DOI:

https://doi.org/10.29312/remexca.v15i1.3617

Keywords:

conjugated linoleic acid, functional food, ruminant nutrition

Abstract

Conjugated linoleic acid is considered a functional food since its consumption improves people’s health. This compound is found in the milk of ruminant animals and is synthesized in the rumen and mammary gland using linoleic and α-linolenic acids as substrates, which are widely found in forage plants. Nevertheless, there is little information regarding the content of fatty acids in forages, particularly of native species. Therefore, the study aimed to evaluate the chemical composition and fatty acid profile of native forage shrubs that are consumed by goats under extensive grazing in northern Mexico in 2019. For this, forage shrubs consumed by goats were collected. The selected forages were determined: dry matter, organic matter, crude protein, neutral detergent fiber, acid detergent fiber, total lipids, and fatty acid profile. The forage shrubs consumed by the goats in the rangeland were huizache [Vachellia farnesiana (L.) Wild.], mesquite [Prosopis laevigata (Humb & Bonpl) Wild], gobernadora [Larrea tridentata (Moç. & Seseé DC)] and chaparro prieto [Vachellia constricta (Bentham Siegler & Ebinger Waif)]. Of these, mesquite (CP 148 g kg-1 DM) and chaparro prieto (CP 147 g kg-1 DM) had the best crude protein contents; likewise, mesquite had a high concentration in linoleic (14.21 g 100 g-1 total fatty acids) and α-linolenic (36.22 g 100 g-1 total fatty acids) fatty acids, so these forage shrubs can be considered in the diet of goats that aim to increase the concentration of conjugated linoleic acid in milk or meat of grazing goats.

Downloads

Download data is not yet available.

References

Alva-Pérez, J.; López-Corona, L. E.; Zapata-Campos, C. C.; Vázquez-Villanueva, J. y Barrios-García, H. B. 2019. Condiciones productivas y zoosanitarias de la producción caprina en el altiplano de Tamaulipas, México. Interciencia. 44(3):154-160.

AOAC. 2019. Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International. 21st Ed. AOAC International, USA. 700 p.

Armenta-Quintana, J. A.; Ramírez-Orduña, R.; Ramírez, R. G. and Romero-Vadillo, E. 2011. Organic matter and crude protein ruminal degradation synchrony in diets selected by range goats. Trop. Subtrop. Agroecosyt. 14(1):109-117. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/678/448.

Bauchart, D.; Vérité, R. and Remond, B. 1984. Long-chain fatty acid digestion in lactating cows fed fresh grass from spring to autumn. Can. J. Anim. Sci. 64(Suppl.):330-331. https://cdnsciencepub.com/doi/pdf/10.4141/cjas84-285.

Bernahu, W. and Beyene, F. 2015. Climate variability and household adaptation strategies in Southern Ethiopia. Sustainability. 7(6):6365-6375. https://doi.org/10.3390/ su7066353.

Boufaïed, H.; Chouinard, P. G.; Tremblay, G. F.; Michaud, R.; Petit, H. V.; Michaud, M. and Bélanger, G. 2003. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. Sci. 83(3):501-511. https://doi.org/10.4141/A02-098.

Cardozo-Herrán, M.; Ayala-Burgos, A.; Aguilar-Pérez, C.; Ramírez-Avilés, L.; Ku-Vera, J. and Solorio-Sánchez, F. J. 2019. Productivity of lactanting goats under three grazing systems in the tropics of México. Agroforest. Syst. 95(1):33-41. https://doi.org/10.1007/s10457-019-00384-6.

Carvalho, W. F. D.; Oliveira, M. E. D.; Alves, A. A.; Moura, R. L. D. and Moura, R. M. A. S. 2017. Energy supplementation in goats under a silvopastoral system of tropical grasses and Leucaena. Rev. Ciênc. Agron. 48(1):199-207. https://doi.org/ 10.5935/1806-6690.20170023.

Chimphango, B. M. S.; Gallant, H. L.; Poulsen, C. Z.; Poulsen, C. Z.; Samuels, M. I.; Hattas, D.; Curtis, O. E.; Muasya, A. M.; Cupido, C.; Boatwright, J. S. and Howieson, J. 2020. Native legume species as potential fodder crops in the Mediterranean renosterveld shrubland, South Africa. J. Arid. Environ. 173:104015. https://doi.org/10.1016/j.jaridenv.2019.104015.

Clapham, W. M.; Foster, J. G.; Neel, J. P. S. and Fedders, J. M. 2005. Fatty acid composition of traditional and novel forages. J. Agric. Food. Chem. 53(26):10068-10073. https://doi.org/10.1021/jf0517039.

Elgersma, A.; Ellen, G.; Van der Horst, H.; Muuse, B. G.; Boer, H. and Tamminga, S. 2004. Influence of cultivar and cutting date on fatty acids composition of perennial ryegrass (Lolium perenne L.). Grass Forage Sci. 58(3):323-331. https://doi.org/ 10.1046/j.1365-2494.2003.00384.x.

Estell, R. E.; Utsumi, S. A. and Cibils, A. F. 2010. Measurement of monoterpenes and sesquiterpenes in serum, plasma, and rumen fluid from sheep. Anim. Feed Sci. Technol. 158(1-2):104-109. https://doi.org/10.1016/j.anifeedsci.2010.03.011.

Ferretti, F.; Costa, A.; Corazza, M.; Pietrocini, V.; Cesaretti, G. and Lovari, S. 2014. Males are faster foragers than females: intersexual differences of foraging behaviour in the Apennine chamois. Behav. Ecol. Sociobiol. 68(8):1335-1344. https://doi.org/ 10.1007/s00265-014-1744-5.

Folch, J.; Lees, M. and Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1):497-509. https://doi.org/10.1016/S0021-9258(18)64849-5.

Foroughbakhch, R.; Hernández-Piñero, J. L.; Carrillo-Parra, A. and Rocha-Estrada, A. 2013. Composition and animal preference for plants used for goat feeding in semiarid Northeastern Mexico. J. Anim. Plant Sci. 23(4):1034-1040. http://www.thejaps.org.pk/docs/v-23-4/14.pdf.

García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. 5ª Ed. Instituto de Geografía-Universidad Nacional Autónoma de México (UNAM). México, DF. 90 p.

Godfray, H. C. J.; Beddington, J. R.; Crute, I. R.; Haddad, L.; Lawrence, D.; Muir, J. F.; Pretty, J.; Robinson, S.; Thomas, S. M. and Toulmin, C. 2010. Food security: the challenge of feeding 9 Billion People. Science. 327(5967):812-818. https://doi.org/ 10.1126/science.1185383.

Gómez-Cortes, P.; Ángel de la Fuente, M. y Juárez, M. 2019. Ácidos grasos trans y ácido linoleico conjugado en alimentos: origen y propiedades biologicas. Nutr. Hosp. 36(2):479-486. https://dx.doi.org/10.20960/nh.2466.

Granados-Rivera, L. D.; Hernández-Mendo, O. and Maldonado-Jáquez, J. A. 2020. Energy balance in lactating goats: Response to mixture of conjugated linoleic acid. Anim. Sci. J. 91(1):1-9. https://doi.org/10.1111/asj.13347.

Griinari, J. M.; Corl, B. A.; Lacy, S. H.; Chouinard, P. Y.; Nurmela, K. V. and Bauman, D. E. 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. J. Nutr. 130(9):2285-2291. https://doi.org/10.1093/jn/ 130.9.2285.

Guerrero, M.; Juárez, A. S.; Ramírez, R. G.; Montoya, R.; Murillo, M.; La O, O. y Cerrillo, M. A. 2010. Composición química y degradabilidad de la proteína de forrajes nativos de la región semiárida del norte de México. Rev. Cuba. Cienc. Agric. 44(2):147-154. https://www.redalyc.org/pdf/1930/193015662009.pdf.

Hai, P. V.; Schonewille, J. T.; Dam-Van, T.; Everts, H. and Hendriks, W. H. 2014. Exposure to a novel feedstuff by goat dams during pregnancy and lactation versus pregnancy alone does not further improve post weaning a acceptance of this feedstuff by their kids. J. Sci. Food Agri. 96(6):2215-2219. https://doi.org/10. 1002/jsfa.7338.

Haro, A. B.; Artacho, R. y Cabrera-Vique, C. 2006. Ácido linoleico conjugado: Interes actual en nutrición humana. Med. Clin. 127(13):508-515. https://doi.org/10.1157/ 13093270.

Isidro-Requejo, L. M.; Meza-Herrera, C. A.; Pastor-López, F. J.; Maldonado-Jáquez, J. A. and Salinas-González, H. 2019. Physicochemical characterization of goat milk produced in the Comarca Lagunera, Mexico. Anim. Sci. J. 90(4):563-573. https://doi.org/10.1111/asj.13173.

Kim, E. J.; Huws, S. A.; Lee, M. R. F.; Wood, J. D.; Muetzel, S. M.; Wallace, R. J. and Scollan, N. D. 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr. 138(5):889-896. https://doi.org/10.1093/jn/138.5.889.

Kim, J. H.; Kim, Y.; Kim, Y. J. and Park, Y. 2016. Conjugated linoleic acid: Potential health benefits as a functional food ingredient. Annu. Rev. Food Sci. Technol. 7(1):221-244. https://doi.org/10.1146/annurev-food-041715-033028.

Lahlou, M. N.; Kanneganti, R.; Massingill, L. J.; Broderick, G. A.; Park, Y.; Pariza, M. W.; Ferguson, J. D. and Wu, Z. 2014. Grazing increases the concentration of CLA in dairy cow milk. Animal. 8(7):1191-1200. https://doi.org/10.1017/S175173111 4000998.

León, J. M.; Pabón, M. L. and Carulla, J. E. 2011. Pasture traits and conjugated linoleic acid (CLA) content in milk. Rev. Colom. Cienc. Pec. 24(1):63-73. http://www.scielo.org.co/pdf/rccp/v24n1/v24n1a09.pdf.

Maldonado-Jáquez, J. A.; Granados-Rivera, L. D.; Hernández-Mendo, O.; Pastor-López, F. J.; Isidro-Requejo, L. M.; Salinas-González, H. y Torres-Hernández, G. 2017. Uso de un alimento integral como complemento a cabras locales en pastoreo: respuesta en producción y composición química de la leche. Nova Scientia. 9(18):55-75. https://doi.org/10.21640/ns.v9i18.728.

Mandujano, S.; Barrera-Salazar, A. y Vergara-Castrejón, A. 2019. Similitud de especies de plantas consumidas por rebaños de cabras en el bosque tropical seco de la Cañada, Oaxaca. Rev. Mex. Cienc. Pec. 10(2):490-505. https://doi.org/10.22319/ rmcp.v10i2.4370.

Manousidis, T.; Kyriazopoulos, A. P.; Parissi, Z. M.; Abraham, E. M.; Korakis, G. and Abas, Z. 2016. Corrigendum to grazing behaviour, forage selection and diet composition of goats in a Mediterranean woody rangeland. Small Rumin. Res. 145:142-153. https://doi.org/10.1016/j.smallrumres.2016.11.007.

Mellado, M.; Aguilar, C. N.; Arévalo, J. R.; Rodríguez, A.; García, J. E. and Mellado, J. 2011. Selection for nutrients by pregnant goats on a microphyll desert scrub. Animal. 5(6):972-979. https://doi.org/10.1017/S1751731110002715.

Mosley, E. E.; Shafii, B.; Moate, P. J. and McGuire, M. A. 2006. Cis-9, trans-11 conjugated linoleic acid is synthesized directly from vaccenic acid in lactating dairy cattle. J. Nutr. 136(3):570-575. https://doi.org/10.1093/jn/136.3.570.

NRC. 2007. National Research Council. Committee on nutrient requirements of small ruminants. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. National Academy Press, USA. 384 p.

Núñez-Domínguez, R.; Ramírez-Valverde, R.; Saavedra-Jiménez, L. A. y García-Muñiz J. G. 2016. La adaptabilidad de los recursos zoogenéticos criollos, base para enfrentar los desafíos de la producción animal. Arch. Zoot. 65(251):461-468. http://www.ciap.org.ar/Sitio/Archivos/criollo%20recursos.pdf.

Prieto-Manrique, E.; Mahecha-Ledesma, L.; Ángulo-Arizala, J. y Vargas-Sánchez, J. E. 2016. Efecto de la suplementación lipídica sobre ácidos grasos en leche de vaca, énfasis en ácido ruménico. Agronomía Mesoamericano. 27(2):421-437. http://dx.doi.org/10.15517/am.v27i2.22022.

Quiroz-Cardoso, F.; Rojas-Hernández, S.; Olivares-Pérez, J.; Hernández-Castro, E.; Jiménez-Guillén, R.; Córdova-Izquierdo, A.; Villa-Mancera, A. y Abdel-Fattah, S. 2015. Composición nutricional, consumo e índices de palatabilidad relativa de los frutos de tres acacias en la alimentación de ovejas y cabras. Arch. Med. Vet. 47(1):33-38. http://dx.doi.org/10.4067/S0301-732X2015000100007.

Ritzenthaler, K. L.; McGuire, M. K.; Falen R.; Shultz, T. D.; Dasgupta, N. and McGuire, M. A. 2001. Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J. Nutr. 131(5):1548-1554. https://doi.org/10.1093/jn/131.5.1548.

Santos, K. C.; Magalhães, A. L. R.; Silva, D. K. A.; Araújo, G. G. L.; Fagundes, G. M.; Ybarra, N. G. and Abdalla, A. L. 2017. Nutritional potential of forage species found in Brazilian Semiarid region. Livest. Sci. 195:118-124. https://doi.org/10.1016/ j.livsci.2016.12.002.

SAS Institute. 2002. User'́s guide of Statistical Analysis System (SAS). SAS Institute Inc. Cary, USA. 550 p.

Sinclair, A. J.; Attar-Bashi, N. M. and Li, D. 2002. What is the role of alpha linolenic acid for mammals’ lipids. 37(12):1113-1123. https://doi.org/10.1007/s11745-002-1008-x.

Siurana, A. and Calsamiglia, S. 2016. A meta-analysis of feeding strategies to increase the content of conjugated linoleic acid (CLA) in dairy cattle milk and the impact on daily human consumption. Anim. Feed Sci. Technol. 217:13-26. https://doi.org/ 10.1016/j.anifeedsci.2016.04.013.

Suárez-Paternina, E.; Reza-García, S.; Cuadrado-Capella, H.; Pastrana-Vargas, I.; Espinosa-Carvajal, M. y Mejía-Kerguelén, S. 2015. Variación en la concentración de sólidos solubles durante el día, en tres pasturas en época seca en el valle medio del río Sinú. Corpoica Cienc. Tecnol. Agropec. 16(2):181-188. https://doi.org/ 10.21930.

Toyes-Vargas, E. A.; Murillo-Amador, B.; Espinoza-Villavicencio, J. L.; Carreón-Palau, L. y Palacios-Espinosa, A. 2013. Composición química y precursores de ácidos vaccénico y ruménico en especies forrajeras en Baja California Sur, México. Rev. Mex. Cienc. Pec. 4(3):373-386. http://www.scielo.org.mx/pdf/rmcp/v4n3/ v4n3a8.pdf.

Ursin, V. M. 2003. Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J. Nutr. 133(12):4271-4274. https://doi.org/10. 1093/jn/133.12.4271.

Van Soest, P. J.; Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.

Verma, D. K. and Srivastav, P. P. 2020. Bioactive compounds of rice (Oryza sativa L.): review on paradigm and its potential benefit in human health. Trends in Food Sci. Technol. 97:355-365. https://doi.org/10.1016/j.tifs.2020.01.007.

Yang, B.; Chen, H.; Stanton, C.; Ross, R. P.; Zhang, H.; Chen, Y. Q. and Chen, W. 2015. Review of the roles of conjugated linoleic acid in health and disease. J. Funct. Foods. 15:314-325. https://doi.org/10.1016/j.jff.2015.03.050.

Zapata-Campos, C. C. y Mellado-Bosques, M. A. 2021. La cabra: selección y hábitos de consumo de plantas nativas en agostadero árido, CienciaUAT. 15(2):169-185. https://doi.org/10.29059/cienciauat.v15i2.1409.

Published

2024-02-04

How to Cite

Garay Martínez, Jonathan Raúl, Jorge Alonso Maldonado Jáquez, Yuridia Bautista Martínez, Francisco Antonio Cigarroa Vázquez, Sandra Patricia Maciel Torres, and Lorenzo Danilo Granados Rivera. 2024. “Fatty Acid Profile of Forage Shrubs in Northern Mexico”. Revista Mexicana De Ciencias Agrícolas 15 (1). México, ME:e3617. https://doi.org/10.29312/remexca.v15i1.3617.

Issue

Section

Articles

Most read articles by the same author(s)