Iodine increases the concentration of phenolic compounds and photosynthetic pigments in three cultivars of Ficus carica L. subjected to salt stress
DOI:
https://doi.org/10.29312/remexca.v13i28.3285Keywords:
chlorophylls, fig, salinity, total flavonoids, total phenolsAbstract
Iodine (I) is a non-essential element for plants; however, the application of the element has shown positive effects on plants grown in optimal conditions or under stress. The objective of this experiment was to evaluate the impact of iodine on the concentration of phenolic compounds, antioxidant capacity and photosynthetic pigments in leaves of three fig cultivars subjected to salt stress. Eight-month-old fig plants were established under a completely randomized experimental design with a 3x2x2 factorial arrangement: three fig cultivars (Ficus carica L.): Brown Turkey, Kadota and Black Mission; two levels of NaCl (0 and 100 mmol L-1) and two levels of iodine (0 and 10 mg L-1). The analyses of variance showed the impact of the main factors (cultivars, NaCl and I) and the interaction between them. The application of iodine on fig seedlings increased the concentration of chlorophyll a, regardless of the cultivar and the concentration of NaCl. The number of new leaves and their dry weight were affected by the interaction between NaCl and I, these variables increased with the presence of I in saline condition. The relative content of total phenols, total flavonoids, antioxidant capacity by DPPH and photosynthetic pigments (chlorophylls and carotenoids) showed interaction between the cultivars, the levels of NaCl and the concentration of I, where the values of these variables were increased by the presence of I under salinity conditions. Due to the above, iodine could be considered as an alternative to mitigate the stress caused by NaCl in Ficus carica L. plants.
Downloads
References
Blasco, B.; Leyva, R.; Romero, L. and Ruiz, J. M. 2013. Iodine effects on phenolic metabolism in lettuce plants under salt stress. J. Agric. Food Chem. 61(11):2591-2596. DOI: https://doi.org/10.1021/jf303917n
Cakmak, I.; Prom-u-thai, C.; Guilherme, L. R. G.; Rashid, A.; Hora, K. H.; Yazici, A.; Savasli, E.; Kalayci, M.; Tutus, Y.; Phuphong, P.; Rizwan, M.; Martins, F. A. D.; Dinali, G. S. and Ozturk, L. 2017. Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant and Soil. 418(1):319-335. Carballo, M. F. J.; Olivares, S. E.; Bolivar, D. M.; Antonio, B. A.; Vázquez, B. M. E. and Nino, M. G. 2019. Effect of silicon on germination of Moringa oleifera Lam. in different types of salts. Fresenius Environmental Bulletin. 28(11):8823-8830. Cortés, F. C.; Rodríguez, M. M. N.; Benavides, M. A.; García, C. J. L.; Tornero, C. M. y Sánchez, G. P. 2016. El yodo aumenta el crecimiento y la concentración de minerales en plántulas de pimiento morrón. Agrociencia. 50(6):747-758. DOI: https://doi.org/10.1007/s11104-017-3295-9
Duborská, E.; Urík, M. and Šeda, M. 2020. Iodine biofortification of vegetables could improve iodine supplementation status. Agronomy. 10(10):1574. Golubkina, N.; Kekina, H. and Caruso, G. 2018. Yield, quality, and antioxidant properties of Indian mustard (Brassica juncea L.) in response to foliar biofortification with selenium and iodine. Plants. 7(4):80-89. Gonzali, S.; Kiferle, C. and Perata, P. 2017. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnol. 44:16-26. Halka, M.; Smoleń, S. and Ledwożyw, S. I. 2020. Antioxidant potential and iodine accumulation in tomato (Solanum lycopersicum L.) seedlings as the effect of the application of three different iodobenzoates. Folia Hortic. 32(2):203-219.
Incrocci, L.; Carmassi, G.; Maggini, R.; Poli, C.; Saidov, D.; Tamburini, C.; Kiferle, C.; Perata, P. and Pardossi, A. 2019. Iodine accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves grown in floating system technique. Front. Plant Sci. 10:1494. Doi: 10.3389/fpls.2019.01494. Kiferle, C.; Ascrizzi, R.; Martinelli, M.; Gonzali, S.; Mariotti, L.; Pistelli, L.; Flamini, G. and Perata, P. 2019. Effect of Iodine treatments on Ocimum basilicum L.: biofortification, phenolics production and essential oil composition. PLoS ONE. 14(12):0226559. Doi:10.1371/journal.pone.0226559.
Kiferle, C.; Martinelli, M.; Salzano, A. M.; Gonzali, S.; Beltrami, S.; Salvadori, P. A.; Hora, K.; Holwerda, H. T.; Scaloni, A. and Perata, P. 2021. Evidence for a nutritional role of iodine in plants. front. Plant Sci. 12:616868. Doi: 10.3389/fpls. 2021.616868. Leyva, R.; Sánchez, R. E.; Ríos, J. J.; Rubio, W. M. M.; Romero, L.; Ruiz, J. M. and Blasco, B. 2011. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci. 181(2):195-202.
Lyons, G. 2018. Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front. Plant Sci. 9:730. Doi:10.3389/fpls.2018.00730.
Medrano, M. J.; Leija, M. P.; González, M. S.; Juárez, M. A. and Benavides, M. A. 2016. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant Sci. 7:1146. Doi:10.3389/fpls.2016.01146. DOI: https://doi.org/10.3389/fpls.2016.01146
Pérez, S. S. and Medrano, M. J. 2021. Uso del yodo como inductor a la tolerancia en plántulas de tomate bajo condiciones de estrés por salinidad. Rev. Científica de la Universidad Autónoma de Coahuila. 15(25):14-22.
Rajput, R. D. and Patil, R. P. 2017. The comparative study on spectrophotometric analysis of chlorophyll and carotenoids pigments from non-leguminous fodder crops. Inter. J. Innov. Sci. Eng.Technol. 7:140-148.
Rodríguez, S. P. A.; Zavala, G. F.; Urías, O. V.; Muy, R. D.; Heredia, J. B. and Niño, M. G. 2020. Chromatic, nutritional and nutraceutical properties of pigmented native maize (Zea mays L.) genotypes from the Northeast of Mexico. Arabian J. Sci. Eng. 45(1):95-112.
Sabatino, L.; Di, G. F.; Consentino, B. B.; Rouphael, Y.; El-Nakhel, C.; Bella, S.; Vasto, S.; Mauro, R. P.; D’Anna, F.; Iapichino, G.; Calderella, R. and Pasquale, C. 2021. Iodine biofortification counters micronutrient deficiency and improve functional quality of open field grown curly endive. Horticulturae. 7:58. Doi:10.3390/horticulturae7030058.
Salimpour, A.; Shamili, M.; Dadkhodaie, A.; Zare, H. and Hadadinejad, M. 2019. Evaluating the salt tolerance of seven fig cultivars (Ficus carica L.). Adv. Hortic. Sci. 33(4):553-565. Schaich, K. M.; Tian, X. and Xie, J. 2015. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Functional Foods. 14:111-125. Sularz, O.; Smoleń, S.; Koronowicz, A.; Kowalska, I. and Leszczyńska, T. 2020. Chemical composition of lettuce (Lactuca sativa L.) biofortified with iodine by KIO3, 5-Iodo-, and 3.5-diiodosalicylic acid in a hydroponic cultivation. Agronomy. 10(7):1022-1029.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.