Effect of plant growth-promoting rhizobacteria inoculation on tomato under commercial shade-house conditions

Authors

  • Rubén Palacio-Rodríguez Laboratory of Microbial Ecology-Faculty of Biological Sciences-Juarez University of the State of Durango. Av. Universidad s/n, Fracc. Philadelphia, Gomez Palacio, Durango, Mexico. ZC. 35010.
  • Benjamín Nava-Reyes Laboratory of Microbial Ecology-Faculty of Biological Sciences-Juarez University of the State of Durango. Av. Universidad s/n, Fracc. Philadelphia, Gomez Palacio, Durango, Mexico. ZC. 35010.
  • Homero Sánchez-Galván Laboratory of Microbial Ecology-Faculty of Biological Sciences-Juarez University of the State of Durango. Av. Universidad s/n, Fracc. Philadelphia, Gomez Palacio, Durango, Mexico. ZC. 35010.
  • Jesús Josafath Quezada-Rivera Laboratory of Microbial Ecology-Faculty of Biological Sciences-Juarez University of the State of Durango. Av. Universidad s/n, Fracc. Philadelphia, Gomez Palacio, Durango, Mexico. ZC. 35010.
  • Jorge Sáenz-Mata Laboratory of Microbial Ecology-Faculty of Biological Sciences-Juarez University of the State of Durango. Av. Universidad s/n, Fracc. Philadelphia, Gomez Palacio, Durango, Mexico. ZC. 35010.

DOI:

https://doi.org/10.29312/remexca.v13i28.3278

Keywords:

compost, PGPR, protected cultivation, tomato, yield

Abstract

In the present study, the effect of the inoculation of Plant Growth Promoting Rhizobacteria (root-dwelling bacteria that promote plant growth through various mechanisms, commonly known by the acronym PGPR); LBEndo1 (Bacillus paralicheniformis), NFbEndo2M2 (Acinetobacter guillouiae), KBEndo3 (Aeromonas caviae), and KBEcto4 (Pseudomonas lini) were evaluated in tomato plants (Solanum lycopersicum L. cv ‘Top1182’) into two soil preparations and the use of compost under commercial shade house conditions. Root weight of tomato plant were increased significantly by inoculation with LBEndo1 and KBEcto4 strains, 119.3 and 81.9%, respectively, on composted flatted soil conditions compared to tomato plants control uninoculated. The PGPR treatments also increased fruit number per plant on both soil condition preparations. KBEcto4 was the treatment with the highest number of fruits with 23 tomatoes plant-1, compared with 18.6 fruits plant-1 control uninoculated on composted flatted soil conditions. The yield and marketable yields were also enhanced by the inoculation of LBEndo1 and KBEcto4 strains in both soil preparations. The plant growth promoting rhizobacteria and the use of organic fertilizer have the potential to be useful under shade house production and is a viable alternative to improving the yield of tomato.

Downloads

Download data is not yet available.

References

Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389-3402. DOI: https://doi.org/10.1093/nar/25.17.3389

Armada, E.; Portela, G.; Roldán, A. and Azcón, R. 2014. Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma. 232:640-648. DOI: https://doi.org/10.1016/j.geoderma.2014.06.025

Ayala, S. and Prakasa, R. E. V. S. 2002. Perspectives of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci India. 82(7):797-807. Cervantes, V. T. J. Á.; Valenzuela, G. A. A.; Cervantes, V. M. G.; Guzmán, S. T. L.; Fortiz, E. L.; Rangel, P. P. and Rueda, P. E. O. 2021. Morphophysiological, enzymatic, and elemental activity in greenhouse tomato Saladette seedlings from the effect of plant growth-promoting rhizobacteria. Agronomy. 11(5):1-15.

Cook, R. and Calvin, L. 2005. Greenhouse tomatoes change the dynamics of the North American fresh tomato industry. Economic Research Service ERR-2. USDA/ERS. Washington. DC. 20-33 pp. http://www.ers.usda.gov/publications/err2/err2g.pdf.

Copetta, A.; Bardi, L.; Bertolone, E. and Berta, G. 2011. Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst. 145(1):106-115. DOI: https://doi.org/10.1080/11263504.2010.539781

Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13-15. DOI: https://doi.org/10.2307/2419362

Dumas, Y.; Dadomo, M.; Di-Lucca, G. and Grolier, P. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 85(3):369-382. DOI: https://doi.org/10.1002/jsfa.1370

Espinosa, P. B.; Cano, R. P.; Salas, P. L.; García, H. J. L.; Preciado, R. P.; Sáenz, M. J. and Reyes, C. J. L. 2019. Bioinoculantes y concentración de la solución nutritiva sobre la producción y calidad de tomate. Biotecnia. 21(3):100-107.

Espinosa, P. B.; Moreno, R. A.; Cano, R. P.; Álvarez, R. V. P.; Sáenz, M. J.; Sánchez, G. H. y González, R. G. 2017. Inoculación de rizobacterias promotoras del crecimiento vegetal en tomate (Solanum lycopersicum L.) cv Afrodita en invernadero. Terra Latinoam. 35(2):169-178. DOI: https://doi.org/10.28940/terra.v35i2.194

Felici, C.; Vettori, L.; Giraldi, E.; Forino, L. M. C.; Toffanin, A.; Tagliasacchi, A. M. and Nuti, M. 2008. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl Soil Ecol. 40(2):260-270. DOI: https://doi.org/10.1016/j.apsoil.2008.05.002

Gamalero, E.; Martinotti, M. G.; Trotta, A.; Lemanceau, P. and Berta, G. 2002. Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol. 155(2):293-300. DOI: https://doi.org/10.1046/j.1469-8137.2002.00460.x

Gamalero E.; Trotta, A.; Massa, N.; Copetta, A.; Martinotti, M. G. and Berta, G. 2004. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth., root architecture and P acquisition. Mycorrhiza. 14(3):185-192. DOI: https://doi.org/10.1007/s00572-003-0256-3

González, R. G.; Espinosa, P. B.; Cano, R. P.; Moreno, R. A.; Leos, E. L.; Sánchez, G. H. y Sáenz, M. J. 2018. Influencia de rizobacterias en la producción y calidad nutracéutica de tomate bajo condiciones de invernadero. Rev. Mex. Cienc. Agríc. 9(2):367-379. DOI: https://doi.org/10.29312/remexca.v9i2.1078

Gravel, V.; Antoun, H. and Tweddell, R. J. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol. Biochem. 39(8):1968-1977. DOI: https://doi.org/10.1016/j.soilbio.2007.02.015

Gruda N. 2005. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 24(3):227-247. DOI: https://doi.org/10.1080/07352680591008628

Gül, A.; Kıdoğlu, F.; Tüzel, Y. and Tüzel, I. 2008. Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Span J. Agric. Res. 6(3):422-429. DOI: https://doi.org/10.5424/sjar/2008063-335

Jones, J. B. 1999. Tomato plant culture. In: in the field, greenhouse, and home garden. CRC Press LLC., Florida. 299 p.

Katsenios, N.; Andreou, V.; Sparangis, P.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Stergiou, P.; Xanthou, M. Z.; Kakabouki, I.; Vlachakis, D.; Djordjevic, S.; Katsaros, G. and Efthimiadou, A. 2021. Evaluation of plant growth promoting bacteria strains on growth, yield and quality of industrial tomato. Microorganisms. 9(10):1-17.

Kokalis, B. N.; Vavrina, C. S.; Rosskopf, E. N. and Shelby, R. A. 2002. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil. 238(2):257-266. Kumari B.; Mallick, M. A.; Solanki, M. K.; Solanki, A. C.; Hora, A.; Guo, W. 2019. Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. In: Ansari, R. and Mahmood, I. (Ed.). Plant health under biotic stress. Springer. Singapore. 109-127 pp. https://doi.org/10.1007/978-981-13-6040-4-6.

López, B. R.; Bashan, Y.; Trejo, A. and de-Bashan, L. E. 2013. Amendment of degraded desert soil with wastewater debris containing immobilized Chlorella sorokiniana and Azospirillum brasilense significantly modifies soil bacterial community structure., diversity., and richness. Biol. Fert. Soils. 49(8):1053-1063. DOI: https://doi.org/10.1007/s00374-013-0799-1

Mahajan, G. and Singh, K. G. 2006. Response of greenhouse tomato to irrigation and fertigation. Agr. Water Manage. 84(2):202-206. DOI: https://doi.org/10.1016/j.agwat.2006.03.003

Mena, V. H. and Olalde, P. V. 2007. Alteration of tomato fruit quality by root inoculation with plant growth promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic. 113(1):103-106. DOI: https://doi.org/10.1016/j.scienta.2007.01.031

Naika, S.; Jeude, J.; Goffau, M.; Hilmi, M. and Dam, B. 2005. Cultivation of tomato: production, processing and marketing. Agromisa Foundation and CTA., Wageningen. The Netherlands. 6-10 pp.

Nzanza, B.; Marais, D. and Soundy, P. 2012. Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta Agr. Scand B-S P. 62(3):209-215. Palacio, R. R.; Coria, A. J. L.; López, B. J.; Sánchez, S. J.; Muro, P. G.; Castañeda, G. G. and Sáenz, M. J. 2017. Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts. Symbiosis. 73(3):179-189. DOI: https://doi.org/10.1007/s13199-017-0481-8

Palacio, R. R. 2015. Caracterización de rizobacterias promotoras de crecimiento vegetal del pasto halófilo Distichlis spicata (L.) Poaceae [dissertation]. Gómez Palacio., Durango, México. Facultad de Ciencias Biológicas. Universidad Juárez del Estado de Durango. 26-54 pp.

Pastor, N.; Rosas, S. Luna, V. and Rovera, M. 2014. Inoculation with Pseudomonas putida PCI2., a phosphate solubilizing rhizobacterium, stimulates the growth of tomato plants. Symbiosis. 62(3):157-167. DOI: https://doi.org/10.1007/s13199-014-0281-3

Ruzzi, M. and Aroca, R. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 196:124-134. DOI: https://doi.org/10.1016/j.scienta.2015.08.042

Sharma, R.; Chauhan, A. and Shirkort, C. K. 2015. Characterization of plant growth promoting Bacillus strains and their potential as crop protectans against Phytophthora capsici in tomato. Biol. Agric. Hortic. 31(4):230-244. DOI: https://doi.org/10.1080/01448765.2015.1009860

Son, H. J.; Park, G. T.; Cha, M. S. and Heo, M. S. 2006. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bio. Technol. 97(2):204-210. DOI: https://doi.org/10.1016/j.biortech.2005.02.021

Trejo, A.; De-Bashan, L. E.; Hartmann, A.; Hernandez, J. P.; Rothballer, M.; Schmid, M. and Bashan, Y. 2012. Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Env. Exp Bot. 75:65-73. DOI: https://doi.org/10.1016/j.envexpbot.2011.08.007

Weisburg, W. G.; Barns, S. M; Pelletier, D. A.; David, P. J and Gene, L. 1991. 16s ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2):697-703. DOI: https://doi.org/10.1128/jb.173.2.697-703.1991

Yu, X.; Liu, X; Zhu, T. H.; Liu, G. H. and Mao, C. 2011. Isolation and characterization of phosphate solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biol. Fert. Soils. 47(4):437-446. DOI: https://doi.org/10.1007/s00374-011-0548-2

Zulueta, R. R.; Hernández, M. L. G.; Reyes, P. J. J.; González, M. G. Y. and Lara, C. L. 2020. Effects of co-inoculation of Bacillus subtilis and Rhizoglomus intraradices in tomato production (Solanum lycopersicum L.) in a semi-hydroponic system. Rev. Bio. Cienc. 7:1-17.

Published

2022-09-22

How to Cite

Palacio-Rodríguez, Rubén, Benjamín Nava-Reyes, Homero Sánchez-Galván, Jesús Josafath Quezada-Rivera, and Jorge Sáenz-Mata. 2022. “Effect of Plant Growth-Promoting Rhizobacteria Inoculation on Tomato under Commercial Shade-House Conditions”. Revista Mexicana De Ciencias Agrícolas 13 (28). México, ME:231-42. https://doi.org/10.29312/remexca.v13i28.3278.

Issue

Section

Articles

Most read articles by the same author(s)