Effect of the application of humic substances and rhizobacteria on raspberry fruits
DOI:
https://doi.org/10.29312/remexca.v16i1.3191Keywords:
humic acids, fulvic acids, microorganisms, qualityAbstract
Mexico is an important producer in the cultivation of raspberries (Rubus idaeus L.); nevertheless, intensive agriculture poses serious problems, such as the decrease in soil fertility due to the indiscriminate use of chemical fertilizers and pesticides, and biotechnological alternatives favorable to the environment are sought. This research aimed to evaluate the effect of a biostimulant with humic substances and rhizobacteria on agronomic and quality variables in raspberry fruits. The research was conducted in 2021 in a greenhouse of the Department of Horticulture at the Antonio Narro Autonomous Agrarian University in Saltillo, Coahuila, Mexico. The following treatments were used: 1) fulvic acids and mixture of microorganisms; 2) humic acids and Pseudomonas fluorescens; 3) fulvic acids and Azospirillum; 4) fulvic acids and Pseudomonas fluorescens; 5) mixture of humic acids and fulvic acids plus Azospirillum and the control, with two different doses: D1) humic and fulvic acids: 3 ml and 5 ml microorganism; D2) humic acid or fulvic acid 3.5 ml and 4 ml microorganism, with four replications per treatment. Plant height increased with AFyAzoz d1 by 24.3%, fruit weight was favored by AFyMM d2 by 37.8%, yield increased with AFyPF d2 by 78.2%, TSS with AFyMM d1 by 23%, vitamin C increased by 20% with the application of AFyPF d2. In the principal component analysis, there was a positive correlation between the number of fruits and plant height (r= 0.94**), yield and number of fruits (r= 0.91**). Biostimulants with rhizobacteria and humic substances are a biotechnological alternative to be applied to raspberry crops.
Downloads
References
Abd El-Razek, E.; Haggag, L. F. and El-Hady, E. S. 2020. Effect of soil application of humic and biohumic acid on the yield and quality of the fruit of ‘Kalamata’ olive trees. Bull Natl Res Cent. 44(73):1-8. https://doi.org/10.1186/s42269-020-00318-8.
Abd El-Rheem, K. M.; Mohammed, A. S. and El Damarawy, Y. A. 2017. Effect of humic and fulvic acid on growth, yield and nutrients balance of ‘costata’ persimmon trees. Journal of Agriculture and Food Technology. 7(4):1-5.
Afonso, S.; Oliveira, I. V.; Meyer, A. S. and Gonçalves, B. 2022. Biostimulants to improved tree physiology and fruit quality: a review with special focus on sweet cherry. Agronomy. 12(3):1-17. https://doi.org/10.3390/agronomy12030659.
Aghaeifard, F.; Babalar, M.; Fallahi, E. and Ahmadi, A. 2015. Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria ananassa Duch.) cv. Camarosa. Journal of Plant Nutrition. 39(13):1821-1829. https://doi.org/10.1080/01904167.2015.1088023.
Aminifard, M. H.; Aroiee, H.; Nemati, H.; Azizi, M. and Jaafar, Z. E. 2012. Fulvic acid affects pepper antioxidant activity and fruit quality. African Journal of Biotechnology. 11(68):13179-13185. https://doi.org/10.5897/AJB12.1507.
Andrade-Sifuentes, A.; Fortis-Hernández, M.; Preciado-Rangel, P.; Orozco-Vidal, J. A.; Yescas-Coronado, P. and Rueda-Puente, E. O. 2020. Azospirillum brasilense and solarized manure on the production and phytochemical quality of tomato fruits (Solanum lycopersicum L.). Agronomy. 10(12):1-22. https://doi.org/10.3390/agronomy10121956.
Ahmad, S.; Daur, I.; Al-Solaimani, S. G.; Mahmood, S.; Bakhashwain, A. A.; Madkour, M. H. and Yasir, M. 2018. Effect of rhizobacteria inoculation and humic acid application on canola (Brassica napus L.) Pakistan Journal of Botany. 48(5):2109-2120.
Alvarado-Raya, H. E.; Avitia-García, E. y Castillo-González, A. M. 2016. Producción de frambuesa ‘Autumn Bliss’ con diferentes densidades de caña en el Valle de México. Revista Mexicana de Ciencias Agrícolas. 7(1):17-29.
AOAC. 2000. Association of Official Analytical Chemists. Official Methods. Official methods of analysis international. 17th Ed. Washington, DC. 1-30 pp.
Bezuglova, O. and Klimenko, A. 2022. Application of humic substances in agricultural industry. Agronomy. 12(3):1-13. https://doi.org/10.3390/agronomy12030584.
Canellas, L. P. and Olivares, F. L. 2014. Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture. 1(3):1-12.
Da Silva, M. S. R. A.; dos Santos, B. D. M. S.; da Silva, C. S. R. A.; Antunes, L. F. S.; dos Santos, R. M.; Santos, C. H. B. and Rigobelo, E. C. 2021. Humic substances in combination with plant growth-promoting bacteria as an alternative for sustainable agriculture. Front. Microbiol. 12(1):1-14. https://doi.org/10.3389/fmicb.2021.719653.
Dujmovićm, P. D.; Duralija, B.; Voća, S.; Vokurka, A. and Ercisli, S. 2012. Comparison of fruit chemical characteristics of two wild grown Rubus species from different locations of Croatia. Molecules. 17(9):10390-10398. https://doi:10.3390/molecules170910390.
El-Beltagi, H. S.; Ahmad, I. and Basit, A. 2022. Effect of azospirillum and azotobacter species on the performance of cherry tomato under different salinity levels. Gesunde Pflanzen. 74(2):487-499. https://doi.org/10.1007/s10343-022-00625-2.
Espinosa-Palomeque, B.; Moreno-Reséndez, A.; Cano-Ríos, P.; Álvarez Reyna, V. P. J.; Sánchez-Galván, H. y González-Rodríguez, G. 2017. Inoculación de rizobacterias promotoras de crecimiento vegetal en tomate (Solanum lycopersicum L.) cv. Afrodita en invernadero. Terra Latinoamericana. 3(2):169-178.
Eshghi, S. and Garazhian, M. 2015. Improving growth, yield and fruit quality of strawberry by foliar and soil drench applications of humic acid. Iran Agricultural. 34(1):14-20. https://doi.org/10.22099/IAR.2015.3031.
García-Seco, D.; Zhang, Y.; Gutiérrez-Mañero, F. J.; Martin, C. and Ramos-Solano, B. 2015. Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. Plos One. 10(11):1-23. https://doi.org/10.1371/journal.pone.0142639.
García, G. J. and Sommerfeld, M. 2016. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 28(3):1051-1061. https://doi.org/10.1007/s10811-015-0625-2.
González, R. G.; Espinosa, B. P.; Cano, P. R.; Moreno, A. R.; Leos, L. E.; Sánchez, H. G. and Sáenz, J. M. 2018. Influence of rhizobacteria in production and nutraceutical quality of tomato fruits under greenhouse condition. Revista Mexicana de Ciencias Agrícolas. 9(2):367-379. https://doi.org/10.29312/remexca.v9i2.1078.
Hernández-Montiel, L. G.; Chiquito-Contreras, C. J.; Murillo-Amador, B.; Vidal-Hernández, L.; Quiñones-Aguilar, E. E. and Chiquito-Contreras, R. G. 2017. Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. Journal of Soil Science and Plant Nutrition. 17(4):1003-1012.
InfoStat. 2020. Grupo InfoStat. Universidad Nacional de Córdoba (FCA-UNC). Ciudad Universitaria, Córdoba, Argentina. https://www.infostat.com.ar/index.php?mod=page&id=36.
Kamal, H. M.; Elisa, M. A. and Mohammed, A. A. 2017. ‘Effect of some mineral compounds on yield and fruit quality of pomegranate’ Bioscience Research. 14(4):1197-1203.
Kumar, M.; Zeng, X.; Su, S.; Wang, Y.; Bai, L.; Zhang, Y.; Li, T. and Zhang, X. 2019. The effect of fulvic acids derived from different materials on changing properties of albic black soil in the northeast plain of China. Molecules. 24(8):1-12. https://doi.org/10.3390/molecules24081535.
Mc Farland, J. 1907. Nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association. 49(14):1176-1178. http://dx.doi.org/10.1001/jama.1907.25320140022001.
Minitab, Inc. 2009. Minitab Statistical Software, Versión 16 para Windows, State College, Pennsylvania. Minitab® es una marca comercial registrada de Minitab, Inc.
López, R. S.; González, G. C.; Vázquez, R. E.; Olivares, E. S.; Vidales, J. A.; Carranza, R. D. y Ortega, M. E. 2014. Metodología para obtener ácidos húmicos y fúlvicos y su caracterización mediante espectrofotometría infrarroja. Revista Mexicana de Ciencias Agrícolas. 8(5):1397-1407.
Oleńska, E. X.; Małek, W. G. and Wójcik, M. 2020. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment. 743(5):1-61. https://doi.org/10.1016/j.scitotenv.2020.140682.
Olivares, F. L.; Galba, J. E.; Alessandra, M. P.; Da-Silva, L.; Oliveira, N. A. and Pasqualoto, L. C. 2017. Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chem. Biol. Technol. Agric. 4(30):1-13.
Orhan, E.; Esitken, A.; Ercisli, S.; Turan, M. and Sahin, F. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae. 111(1):38-43. https://doi:10.1016/j.scienta.2006.09.002
Ortiz, J. A.; Delgadillo, J. M.; Rodríguez, M. N. y Calderón, G. Z. 2016. Inoculación bacteriana en el crecimiento y calidad del fruto de cinco variedades de fresa en suelos con pH contrastante. Terra Latinoamericana. 34(2):177-185. https://www.terralatinoamericana.org.mx/index.php/terra/article/view/95/95.
Padayatt, S. J.; Daruwala, R.; Wang, Y.; Eck, P. K.; Song, J.; Koh, W. S. and Levine, M. 2001. Vitamin C: from molecular actions to optimum intake. 30 p.
Ponder, A. and Hallmann, E. 2020. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. Journal of Food Composition and Analysis. 87(1):1-14. https://doi.org/10.1016/j.jfca.2020.103429.
Protim, S. S.; Moni, P. B.; Nageshappa, V.; Kumar, D. G. and Kardong, D. 2017. Impact of pseudomonas aeruginosa MAJ PIA03 affecting the growth and phytonutrient production of castor, a primary host-plant of Samia ricini. Journal of soil Science and Plant Nutrition. 17(2):499-515.
Quintero, E. R.; Calero, A. H.; Pérez, Y. D. y Enríquez, L. G. 2018. Efecto de diferentes bioestimulantes en el rendimiento del frijol común. Revista Centro Agrícola. 45(3):73-80.
Rosales-Serrano, L. A.; Segura-Castruita, M. A.; González-Cervantes, G.; Potisek-Talavera, M. C.; Orozco-Vidal, J. A. y Preciado-Rangel, P. 2015. Influence of fulvic acid on the stability of aggregates and melon root in shadow-house. Interciencia. 40(5):317-323.
Schoebitz, M.; López, M. D.; Serrí, H.; Martínez, O. A. and Zagal, E. 2016. Combined application of microbial consortium and humic substances to improve the growth performance of blueberry seedling. Journal of Soil Science and Plant Nutrition. 16(4):1010-1023.
Shahrajabian, M. H.; Chaski, C.; Polyzos, N. and Petropoulos, S. A. 2021. Aplicación de bioestimulantes: una herramienta de gestión de cultivos de bajos insumos para la agricultura sostenible de hortalizas. Biomoléculas. 11(5):1-23. https://doi.org/10.3390/biom11050698.
Shah, Z. H.; Rehman, H. M.; Akhtar, T.; Alsamadany, H.; Hamooh, B. T.; Mujtaba, T.; Daur, I.; Al-Zahrani, Y.; Alzahrani, H. A. S.; Ali, S.; Yang, S. H. and Chung, G. 2018. Humic substances: determining potential molecular regulatory processes in plants. Front. Plant Sci. 9(263):1-12. https://doi.org/10.3389/fpls.2018.00263.
Shehata, S. A.; Gharib, A. A.; Mohamed, M. X.; El-Mogy, A. G. K. F. and Shalaby E. A. 2011. Influence of compost, amino and humic acids on the growth, and yield and chemical parameters of strawberries. Journal of Medicinal Plants Research. 5(11):2304-2308.
SIAP. 2020. Servicio de Información Agroalimentaria y Pesquera. Estadística de Producción Agrícola. Servicio de Información Agroalimentaria y Pesquera | gob.mx (siap.gob.mx).
Steiner, A. A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil. 15(2):134-154. https://doi.org/10.1007/BF01347224.
Todeschini, V.; AitLahmidi, N.; Mazzucco, E.; Marsano, F.; Gosetti, F.; Robotti, E.; Bona, E.; Massa, N.; Bonneau, L.; Marengo, E.; Wipf, D.; Berta, G. and Lingua, G. 2018. Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Front. Plant Sci. 9(1):1-22. https://doi.org/10.3389/fpls.2018.01611.
Trujano-Fragoso, D. E.; Trinidad-Santos, A.; López-Romero, R. M.; Velasco-Cruz, C.; Becerril-Román, A. E. y Cortés-Penagos, C. J. 2017. Características pomológicas, capacidad antioxidante y ácido elágico en frambuesa (Rubus idaeus L.). Revista Fitotecnia Mexicana. 40(3):261-269.
Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z. and Cao, K. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci Rep. 10(1):1-11. https://doi.org/10.1038/s41598-019-56954-2.
Zejak, D.; Glisic, I.; Spalevic, V.; Maskovic, P. and Dudic, B. 2021. Sustainable management of fruit growing in rural areas of Montenegro: the impact of location on the phenological and nutritional properties on raspberry (Rubus idaeus L.). Agronomy. 11(8):1-13. https://doi.org/10.3390/agronomy11081663.

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Mexicana de Ciencias Agrícolas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.