Effect of plant growth-promoting rhizobacteria on agronomic and macronutrient parameters in pak choi

Authors

  • Sigrid Eugenia Cazares-Esquivel Laboratorio de Microbiología de Suelos-Posgrado en Edafología-Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Texcoco de Mora, Estado de México, México. CP. 56264
  • Marco Polo Carballo-Sánchez Laboratorio de Microbiología de Suelos-Posgrado en Edafología-Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Texcoco de Mora, Estado de México, México. CP. 56264
  • Juan José Almaraz-Suarez Laboratorio de Microbiología de Suelos-Posgrado en Edafología-Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Texcoco de Mora, Estado de México, México. CP. 56264

DOI:

https://doi.org/10.29312/remexca.v14i4.3118

Keywords:

Rhizobacteria, Pak choi, Pseudomonas tolaasii, Arthrobacter pokkalii

Abstract

Pak choi is a vegetable of high nutritional value and palatability, which has promoted the increase of its cultivation and consumption outside Asia, its region of origin. This work evaluated the effect of the inoculation of three strains of plant growth-promoting rhizobacteria (PGPR) Arthrobacter pokkalii JLB4, Pseudomonas tolaasii P61 and Pseudomonas tolaasii A46 on pak choi plants under controlled conditions in a high tunnel in 2021. Pak choi seedlings without inoculation were used as a control and two inoculations were performed, the first immediately after transplantation of the seedlings into bags with 5 kg of soil and the second one month later. The plants were simultaneously fertilized with inoculation with NPK in a ratio 164-53-187. The results obtained showed that the strain Pseudomonas tolaasii P61 was the one that had the greatest effect on dry weight (23.04 ±0.057 g plant-1), as well as on the content of P (0.1704 ±0.001 g plant-1) and S (0.1847 ±0.004 g plant-1) compared to the control, with increases of 11.5%, 10.8% and 12.3%, respectively. The strain Arthrobacter pokkalii JLB4 caused greater root growth, the root volume (75 ±5 ml) was 49% higher than the control. However, it had no effect on the dry weight of the aerial part. The results suggest that the combined use of fertilizer and PGPR leads to greater accumulation of biomass and nutrients, such as P, K and S, than the application of fertilizer alone.

Downloads

Download data is not yet available.

References

Alcántar, G. G. y Sandoval, V. M. 1999. Manual de análisis químico de tejido vegetal. Guía de muestreo, preparación, análisis e interpretación. Publicación especial núm. 10 de la Sociedad Mexicana de la Ciencia del Suelo AC. Chapingo, Estado de México. 156 p. Alexander, A.; Mishra, A. and Jha, B. 2019. Halotolerant rhizobacteria: a promising probiotic for saline soil-based agriculture. In saline soil-based agriculture by halotolerant microorganisms. Springer, Singapore. 53-73 pp. https://doi.org/10.1007/978-981-13-8335-9-3.

Almeida, H. J. D.; Carmona, V. M. V.; Cavalcante, V. S.; Prado, R. D. M.; Flores, R. A.; Borges, B. M. M. N. and Mauad, M. 2020. Nutritional and visual diagnosis in broccoli (Brassica oleracea var. Italica L.) Plants: disorders in physiological activity, nutritional efficiency, and metabolism of carbohydrates. Agronomy. 10(10):1572-1579. https://doi.org/10.3390/ agronomy10101572. Basu, A.; Prasad, P.; Das, S. N.; Kalam, S.; Sayyed, R. Z.; Reddy, M. S. and El Enshasy, H. 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability. 13(3):1140-1148. https://doi.org/10.3390/ su13031140.

Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C. E.; Burow, M.; Rollin, P. and Agerbirk, N. 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry. 169:112100. https://doi.org/10.1016/ j.phytochem.2019.112100.

Castagno, L. N.; Sannazzaro, A. I.; Gonzalez, M. E.; Pieckenstain, F. L. and Estrella, M. J. 2021. Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Ann. Appl. Biology. 178(2):256-267. https://doi.org/10.1111/aab.12673.

Gomes, D. G.; Radi, A. J. and De Aquino, G. S. 2018. Growth-promoting bacteria change the development of aerial part and root system of canola. Semina: Ciênc. Agrár. 39(6):2375-2384. https://doi.org/10.5433/1679-0359.2018v39n6p2375.

Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J. and Nain, L. 2020. PGPR mediated alterations in root traits: way towards sustainable crop production. Front. Sustainable Food Syst. 4:287-295. https://doi.org/10.3389/fsufs.2020.618230.

Ishida, M.; Hara, M.; Fukino, N.; Kakizaki, T. and Morimitsu, Y. 2014. Glucosinolate metabolism, functionality, and breeding for the improvement of Brassicaceae vegetables. Breed. Sci. 64(1):48-59. https://doi.org/10.1270/jsbbs.64.48. DOI: https://doi.org/10.1270/jsbbs.64.48

Johnson, T. L.; Dinkova-Kostova, A. T. and Fahey, J. W. 2016. Glucosinolates from the Brassica vegetables and their health effects. In encyclopedia of food and health. Elsevier Inc. 248-255 pp. https://doi.org/10.1016/B978-0-12-384947-2.00354-8. DOI: https://doi.org/10.1016/B978-0-12-384947-2.00354-8

Krishnan, R.; Menon, R. R.; Tanaka, N.; Busse, H. J.; Krishnamurthi, S. and Rameshkumar, N. 2016. Arthrobacter pokkalii sp. nov, a novel plant associated actinobacterium with plant beneficial properties, isolated from saline tolerant pokkali rice, Kerala, India. PLoS One. 11(3):e0150322. https://doi.org/10.1371/journal.pone.0150322. DOI: https://doi.org/10.1371/journal.pone.0150322

Leontidou, K.; Genitsaris, S.; Papadopoulou, A.; Kamou, N.; Bosmali, I.; Matsi, T.; Madesis, P.; Vokou, D.; Karamanoli, K. and Mellidou, I. 2020. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterization and exploration of Phyto-beneficial traits. Sci. Rep. 10:14857. https://doi.org/10.1038/s41598-020-71652-0.

Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development. 140(5): 943-950. https://doi.org/10.1242/dev.086363. DOI: https://doi.org/10.1242/dev.086363

Lobo, C. B.; Tomás, M. S. J.; Viruel, E.; Ferrero, M. A. and Lucca, M. E. 2019. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 219:12-25. https://doi.org/10. 1016/j.micres.2018.10.012.

Malik, D. K. and Sindhu, S. S. 2011. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol. Mol. Biol. Plants. 17(1):25-32. https://doi.org/10.1007/s12298-010-0041-7. DOI: https://doi.org/10.1007/s12298-010-0041-7

Marschner, P.; Solaiman, Z. and Rengel, Z. 2007. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil. Biol. Biochem. 39(1):87-98. https://doi.org/10.1016/j.soilbio.2006.06.014. DOI: https://doi.org/10.1016/j.soilbio.2006.06.014

Maseko, I.; Beletse, Y. G.; Nogemane, N.; du Plooy, C. P.; Musimwa, T. R. and Mabhaudhi, T. 2017. Productivity of non-heading Chinese cabbage (Brassica rapa subsp. chinensis) under different agronomic management factors, S. Afr. J. Plant Soil. 34(4):275-282. https://doi.org/10.1080/02571862.2017.1295324. DOI: https://doi.org/10.1080/02571862.2017.1295324

Qing, C. M.; Fan, L.; Lei, Y.; Bouchez, D.; Tourneur, C.; Yan, L. and Robaglia, C. 2000. Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by agrobacterium infiltration. Mol. Breed. 6:67-72. https://doi.org/10.1023/A:1009658128964. DOI: https://doi.org/10.1023/A:1009658128964

Tsukanova, K. A.; Meyer, J. J. M. and Bibikova, T. N. 2017. Effect of plant growth promoting Rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot. 113:91-102. https://doi.org/10.1016/j.sajb.2017.07.007. DOI: https://doi.org/10.1016/j.sajb.2017.07.007

Vanneste, S. y Friml, J. 2009. Auxin: a trigger for change in plant development. Cell. 136:1005-1016. https://doi.org/10.1016/j.cell.2009.03.001. DOI: https://doi.org/10.1016/j.cell.2009.03.001

Vega-Celedón, P.; Canchignia-Martínez, H.; González, M. y Seeger, M. 2016. Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias. Cultivos Tropicales. 37:33-39.

Wang, J.; Li, R.; Zhang, H.; Wei, G. and Li, Z. 2020. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol. 20(1):1-12. https://doi.org/10.1186/s12866-020-1708-z.

Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G. and Jiang, Y. 2020. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front Plant Sci. 11:904. https://doi.org/10.3389/ fpls.2020.00904.

Zang, Y.; Zhang, H.; Huang, L.; Wang, F.; Gao, F.; Lv, X. y Zhu, Z. 2015. Glucosinolate enhancement in leaves and roots of pak choi (Brassica rapa ssp. chinensis) by methyl jasmonate. Hortic. Environ Biotechnol. 56(6):830-840. https://doi.org/10.1007/s13580-015-0079-0. DOI: https://doi.org/10.1007/s13580-015-0079-0

V14(4)

Published

2023-06-19

How to Cite

Cazares-Esquivel, Sigrid Eugenia, Marco Polo Carballo-Sánchez, and Juan José Almaraz-Suarez. 2023. “Effect of Plant Growth-Promoting Rhizobacteria on Agronomic and Macronutrient Parameters in Pak Choi”. Revista Mexicana De Ciencias Agrícolas 14 (4). México, ME:633-39. https://doi.org/10.29312/remexca.v14i4.3118.

Issue

Section

Investigation notes

Most read articles by the same author(s)