Reduction of hydrogen sulfide by recirculation of effluents in stabilization ponds with the presence of microalgae

Authors

  • Isaías López-Hernández Unidad Región Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez s/n, Colonia Valle Verde, Torreón, Coahuila, México. CP. 34056.
  • Natalia Belén Ortega-Morales Unidad Región Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez s/n, Colonia Valle Verde, Torreón, Coahuila, México. CP. 34056
  • Sergio Arturo Ortiz-Diaz Instituto Tecnológico de Torreón-Doctorado en Agua y Suelo. Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, México. CP. 27170
  • Eduardo Aron Flores-Hernandez Unidad Región Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez s/n, Colonia Valle Verde, Torreón, Coahuila, México. CP. 34056.
  • Laura Andrea Pérez-García Instituto Tecnológico de Torreón-Doctorado en Agua y Suelo. Carretera Torreón-San Pedro km 7.5, Ejido Ana, Torreón, Coahuila, México. CP. 27170
  • Miguel Medrano-Santillana Unidad Región Laguna-Universidad Autónoma Agraria Antonio Narro. Periférico Raúl López Sánchez s/n, Colonia Valle Verde, Torreón, Coahuila, México. CP. 34056.

DOI:

https://doi.org/10.29312/remexca.v13i1.3096

Keywords:

effluent recirculation, wastewater treatment

Abstract

Stabilization ponds (SPs) are used as an alternative for wastewater treatment; however, one of their disadvantages is the emission of bad odors caused by hydrogen sulfide (H2S), which is highly toxic and corrosive, in addition to causing damage to the health of the surrounding population and negatively affecting the metallic structures and electrical equipment exposed. This problem is a priority to be solved in order to continue with the operation of wastewater treatment plants. In this study, a procedure based on the recirculation of 20% of the effluent, which contains native microalgae, is presented as a solution alternative. To determine the optimal percentage of effluent recirculation, a series of recirculation tests were implemented through the jar method and subsequently it was taken to a macro scale, evaluating the performance of the effluent recirculation, comparing the monthly averages of 2019 before the implementation of the project with 2020 already operating. The results showed significant changes in the percentages of pollutant removal, in the biochemical oxygen demand, of 20.8%, total suspended solids, 22.17%, fats and oils, 29.5% and a reduction in fecal coliforms, 91.4%, in addition to reducing H2S with 48.9%, which reduces unpleasant odors and the potential toxic effect on health. We can conclude that the methodology is efficient in improving the parameters, thus complying with the standards of the applicable regulations.

Downloads

Download data is not yet available.

References

Achag, B.; Mouhanni, H. and Bendou, H. 2021, Hydro-biological characterization and efficiency of natural waste stabilization ponds in a desert climate city of assa. Southern Morocco J. Water Supply Res. Technology-Aqua. 70(3):361-374.

Al-Zreiqat, I.; Abbassi, B.; Headley, T.; Nivala, J.; Van-Afferden, M and Müller, R. 2018. Influence of septic tank attached growth media on total nitrogen removal in a recirculating vertical flow constructed wetland for treatment of domestic wastewater. Ecol. Eng. 118(10):171-178.

Aslam, A.; Khan, S. J. and Shahzad, H. M. A. 2019. Impact of sludge recirculation ratios on the performance of anaerobic membrane bioreactor for wastewater treatment. Bio. Technol. 288 (121473) 9.

Benito, M.; Menacho, C.; Chueca, P.; Ormad, M. P. and Goni, P. 2020. Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. J. Environ. Manag. 261(110268):9.

Cisterna, P.; Gutiérrez, A. and Sastre, A. 2015. H. Impact of previous acclimatization of biomass and alternative substrates in sunflower oil biodegradation. Dyna. 82(193):56-61.

Coggins, L. X.; Crosbie, N. D. and Ghadouani, A. 2019. The small, the big, and the beautiful: emerging challenges and opportunities for waste stabilization ponds in Australia. Wiley Interdisciplinary Reviews: Water. 6(6):1-18.

Edokpayi, J. N.; Odiyo, J. O.; Popoola, O. E. and Msagati, T. A. M. 2021. Evaluation of contaminants removal by waste stabilization ponds: a case study of siloam WSPs in vhembe district, South Africa. Heliyon. 7(2):1-12.

Ho, L.; Pham, D.; Van-Echelpoel, W.; Muchene, L.; Shkedy, Z.; Alvarado, A. and Goethals, P. 2018. A closer look on spatiotemporal variations of dissolved oxygen in waste stabilization ponds using mixed models. Water. 10(2):1-18.

Jørgensen, S. E. 2020. Waste: stabilization ponds. CRC Press. 2a (Ed.). 8 p.

Leones, M.; Riaños, K. y Mercado L. 2018. Evaluación del poder coagulante del sulfato de aluminioen el proceso de clarificación del agua de la Ciénega de Mlambo-Atlántico. Rev. UIS Ingenierias. 17(2):95-104.

Liu, L.; Hall, G. and Champagne, P. 2018. Disinfection processes and mechanisms in wastewater stabilization ponds: A Review. Environ. Rev. 26(4):1-13.

Minakshi, D.; Kumar, P.; Anju, S.; Piyush, R.; Malaviya, P. and Narveer, S. 2018. Treatment of dairy farm effluent using recirculating constructed wetland units. Adv. Health Environ. Saf. 57-66 pp.

Ramazan, V. 2021. Upgrading of waste stabilization ponds using a low-cost small-scale fine bubble diffused aeration system. Water Sci. Technol. 84(10-11):3104-3121.

Reinoso, R.; Blanco, S.; Torres-Villamizar, L. A. and Becares, E. 2011. Mechanisms for parasites removal in a waste stabilisation pond. Microb. Ecol. 61(3):684-692.

Rezvani-Ghalhari, M.; Schönberger, H. and Askari-Lasaki, B. 2021. Performance evaluation and siting index of the stabilization ponds based on environmental parameters: a case study in Iran. J. Environ. Health Sci. Eng. 19(2):1681-1700.

Rice, E. W.; Baird, R. B. and Eaton, A. D. 2012. Standar methods for the examination of water and wastewater. 22th. (Ed.). American public health association Washington DC. 54(22):674-689.

Salehi, R. and Chaiprapat, S. 2019. Single-/triple-stage biotrickling filter treating a H2S-rich biogas stream: statistical analysis of the effect of empty bed retention time and liquid recirculation velocity. J. Air & Waste Manag. Association. 69(12):1429-1437.

SE. 1987. Secretaría de Economía. Norma mexicana nmx-aa-42 calidad del agua-determinación del número más probable (NMP) de coliformes totales, coliformes fecales (termotolerantes) y escherichia coli presuntiva. Diario Oficial de la Federación. 10-17 pp.

SE. 2001. Secretaría de Economía. Norma mexicana, análisis de agua determinación de la demanda bioquímica de oxígeno en aguas naturales, residuales (DBO5) y residuales tratadas método de prueba. Diario Oficial de la Federación. 15-17 pp.

SE. 2013. Secretaría de Economía. Norma mexicana nmx-aa-005-scfi análisis de agua medición de grasas y aceites recuperables en aguas naturales, residuales y residuales tratadas. Método de prueba. Diario Oficial de la Federación. 5-11 pp.

SE. Secretaría de Economía. 2012. Norma mexicana nmx-aa-113-scfi análisis de agua medición del número de huevos de helminto en aguas residuales y residuales tratadas por observación microscópica - método de prueba. Diario Oficial de la Federación. 1-14 pp.

STPS. 1998. Secretaría del Trabajo y Previsión Social. NOM-010-STPS, condiciones de seguridad e higiene en los centros de trabajo donde se manejen, transporten, procesen o almacenen sustancias químicas capaces de generar contaminación en el medio ambiente laboral. Diario Oficial de la Federación. 13-14 pp.

Secretaría de Economía. 2001. Norma mexicana NMX-AA-012-SCFI análisis de agua determinación de oxígeno disuelto en aguas naturales, residuales y residuales tratadas método de prueba. Diario Oficial de la Federación. 11-13 pp.

Secretaría de Economía. 2015. Norma mexicana NMX-AA-034-SCF análisis de agua medición de sólidos y sales disueltas en aguas naturales, residuales y residuales tratadas método de prueba. Diario Oficial de la Federación. 4-13 pp.

SEMARNAT. 1996. Norma oficial mexicana NOM-001-Ecol, que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. 10-14 pp.

Sheludchenko, M.; Padovan, A.; Katouli, M. and Stratton, H. 2016. Removal of fecal indicators, pathogenic bacteria, adenovirus, cryptosporidium and giardia (oo) cysts in waste stabilization ponds in northern and eastern australia. Int. J. Environ. Res. Public Health. 13(1):1-18.

Sun, S.; Jia, T. and Chen, K. 2019. Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system. Front. Environ. Sci. Eng. 13(60):1-13.

Verbyla, M. E.; Iriarte, M. M.; Mercado-Guzmán, A.; Coronado, O.; Almanza, M. and Mihelcic, J. R. 2016. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops. Sci. Total Environ. 551-552(10):429-437.

Walpone, R. E.; Myers, R. H.; Myers, S. L. y Ye, K. 2012. Probabilidad y estadística para ingeniería y ciencias, 9a (Ed.). Pearson educación México, México. 816 p.

Published

2022-02-08

How to Cite

López-Hernández, Isaías, Natalia Belén Ortega-Morales, Sergio Arturo Ortiz-Diaz, Eduardo Aron Flores-Hernandez, Laura Andrea Pérez-García, and Miguel Medrano-Santillana. 2022. “Reduction of Hydrogen Sulfide by Recirculation of Effluents in Stabilization Ponds With the Presence of Microalgae”. Revista Mexicana De Ciencias Agrícolas 13 (1). México, ME:29-40. https://doi.org/10.29312/remexca.v13i1.3096.

Issue

Section

Articles

Most read articles by the same author(s)