Genotype-environment interaction of yield in yellow corn hybrids, using AMMI and SREG

Authors

  • María Corina Ponce-Encinas Maize Research and Social Projection Program-La Molina National Agrarian University. Avenue La Molina s/n, Lima 12, La Molina, Lima, Peru. CP. 15026.
  • Fernando López-Morales Sustainable Management of Agroecosystems-Institute of Sciences-Meritorious Autonomous University of Puebla-EcoCampus Valsequillo. VAL1 building, road to San Baltazar Tétela km 1.7, San Pedro Zacachimalpa, Puebla. CP. 72960
  • Julián Chura-Chuquija Maize Research and Social Projection Program-La Molina National Agrarian University. Avenue La Molina s/n, Lima 12, La Molina, Lima, Peru. CP. 15026.
  • Enrique Hernández-Leal Experimental Field La Laguna-INIFAP. Boulevard José Santos Valdez 1200 Pte. Matamoros, Coahuila. CP. 27440
  • Gregorio Hernández-Salinas National Technological Institute of Mexico-Higher Technological Institute of Zongolica-Tezonapa Extension. Zongolica Highway to the Company s/n km 4, Tepetlitlanapa, Zongolica, Veracruz, Mexico. CP. 95005
  • Agustín Aragón-García Sustainable Management of Agroecosystems-Institute of Sciences-Meritorious Autonomous University of Puebla-EcoCampus Valsequillo. VAL1 building, road to San Baltazar Tétela km 1.7, San Pedro Zacachimalpa, Puebla. CP. 72960

DOI:

https://doi.org/10.29312/remexca.v13i7.3070

Keywords:

Zea mays, biplot graph, double and trilinear hybrids, stability and adaptability

Abstract

It is indispensable for corn (Zea mays L.) plant breeding programs to select homogeneous materials, with high yield and with stable agronomic attributes; also, that they have a good adaptability in contrasting environments. The objective of the work was to evaluate the stability and genotype-environment interaction of the yield of 36 hard yellow corn hybrids, evaluated in seven environments of Peru, during 2016-2018, these materials were analyzed using the AMMI (additive main effects and multiplicative interaction) and SREG (site regression) models. The design used in each experiment was a 6×6 lattice with three repetitions, and the response variable was grain yield. A combined analysis of variance was performed, in which statistical differences between them (p≤ 0.05) were detected, then the Tukey mean test (p≤ 0.05) was applied, finally the AMMI and SREG models were run and the biplot graphs of each statistical model were obtained. Of the interaction between PC1 and PC2, AMMI explained 45.5% and 15.3%, respectively, and SREG with 59.8% and 12.2%, for the same components. The trilinear hybrids Dk-5005 and AG-01 outperformed the double-cross hybrids. The AMMI model detected the existing GE interaction in grain yield, and the SREG accurately grouped the assessment sites into six mega-environments. The three environments of La Molina and that of Huánuco identified the two hybrids (Dk-5005 and AG-01) with the highest grain yield (11.524 and 11.359 t ha-1, respectively).

Downloads

Download data is not yet available.

References

Camargo, B. I.; Quiros, M. E. y Gordon, M. R. 2011. Identificación de mega‑ambientes para potenciar el uso de genotipos superiores de arroz en Panamá. Pesquisa Agropecuária Brasileira. 46(9):1061-1069. Doi.org/10.1590/S0100-204X2011000900013.

Castillo, D.; Matus, I.; Pozo, A.; Madariaga, R. and Mellado, M. 2012. Adaptability and genotype × environment interaction of spring wheat cultivars in Chile using regression analysis, AMMI, and SREG. Chilean J. Agric. Res. 72(2):167-174. Doi.org/10.4067/S0718-583920 12000200001.

Chura, C. J. y Huanuqueño, C. E. H. 2014. Comportamiento de ocho poblaciones de maíz amarillo (Zea mays L.) en cruzas con un probador. Anales Científicos. 76(1):78-86. Doi.org/10.21704/ac.v76i1.767.

Crossa, J.; Vargas, M.; Cossani, C. M.; Alvarado, G.; Burgueño, J.; Mathews, K. L. and Reynolds, M. P. 2015. Evaluation and interpretation of interactions. Agron. J. 107(2):736-747. Doi.org/10.2134/agronj2012.0491.

Dia, M.; Wehner, T. C. and Arellano, C. 2016. Analysis of genotype × environment interaction using SAS programming. Agron. J. 108(5):1838-1852. Doi.org/10.2134/agronj2016.02.0085.

Eberhart, S. A. and Russel, W. A. 1966. Stability parameters for comparing varieties. Crop Sci. 6(1):36-40. Doi.org/10.2135/cropsci1966.0011183X000600010011x. Farias, F. J. C.; Carvalho, P. L.; Silva, F. J. L. and Teodoro, E. P. 2016. Biplot analysis of phenotypic stability in upland cotton genotypes in Mato Grosso. Genet. Mol. Res. 15(2):1-10. Doi.org/10.4238/gmr.15028009. Fayeun, L. S.; Alake, C. G. and Akinlolu, O. A. 2018. GGE biplot analysis of fluted pumpkin (Telfairia occidentalis) landraces evaluated for marketable leaf yield in Southwest Nigeria. J. Saudi Soc. Agric. Sci. 17(4):416-423. Doi.org/10.1016/j.jssas.2016.10.001. Fritsche, N. R.; Vieira, M. G.; Oliveira, D. R. and Namorato, S. H. 2010. Factor analysis and SREG GGE biplot for the genotype × environment interaction stratification in maize. Ciência Rural. 40(5):1044-1048. Doi.org/10.1590/S0103-84782010000500007.

Gómez, M. Y.; Boicet, F. T.; Tornés, O. N. y Meriño, H. Y. 2018. Interacción genotipo ambiente de cuatro variedades de tomate en la provincia Granma. Rev. Centro Agrícola. 45(2):21-28.

Kandus, M.; Almorza, D.; Boggio R. R. and Salerno, J. C. 2010. Statistical models for evaluating the genotype-environment interaction in maize (Zea mays L.). International J. Exp. Bot. 79(1):39-46. Doi:10.32604/phyton.2010.79.039.

Ledesma, R. L.; Solís, M. E.; Suaste, F. M. P.; Rodríguez, C. J. F. y Cruz, G. M. L. 2012. Análisis GGE biplot del rendimiento de trigo (Triticum spp.) con riego normal y restringido en el Bajío, México. Agrociencia. 46(2):119-131.

López, M. F.; Chura, C. J. y García, P. G. 2019. Interacción genotipo por ambiente del rendimiento de maíz amarillo en híbridos trilineales, Perú. Rev. Mex. Cienc. Agríc. 10(4):859-872. Doi.org/10.29312/remexca. v10i4.1696.

Lozano, R. Á.; Santacruz, V. A.; San-Vicente, G. F.; Crossa, J.; Burgueño, J. y Molina, G. J. D. 2015. Modelación de la interacción genotipo ambiente en rendimiento de híbridos de maíz blanco en ambientes múltiples. Rev. Fitotec. Mex. 38(4):337-347. Doi.org/10.35196/rfm. 2015.4.337.

Manrique, C. P. A. 1997. El maíz en el Perú. Consejo Nacional de Ciencia y Tecnología. (CONCYTEC). Lima, Perú. 362 p.

MINAGRI. 2020. Ministerio de Agricultura y Riego. Sistema de información de cultivos de maíz amarillo duro. Lima, Perú. http://sissic.minagri.gob.pe/sissic.

Ndhlela, T.; Herselman, L.; Magorokosho, C.; Setimela, P.; Mutimaamba, C. and Labuschagne, M. 2014. Genotype environment interaction of maize grain yield using AMMI biplots. Crop Science. 54(5):1992-1999. Doi.org/10.2135/cropsci2013.07.0448.

Neisse, A. C.; Kirch, L. J. and Hongyu, K. 2018. AMMI and GGE biplot for genotype × environment interaction: a medoid-based hierarchical cluster analysis approach for high-dimensional data. Biometrical Letters. 55(2):97-121. Doi.org/10.2478/bile-2018-0008.

SAS Institute. 2012. User’s Guide of SAS. SAS Institute Inc. Cary, North Carolina, USA. 550 p.

SENAMHI. 2020. Servicio Nacional de Meteorología e Hidrología del Perú. Mapa climático nacional. Ministerio del Ambiente. Lima, Perú. https://www.senamhi.gob.pe/?&p=mapa-climatico-del-peru.

Tadeo, R M.; Espinosa, C. A.; Guzmán, M. R.; Turrent, F. A.; Zaragoza, E. J. y Virgen, V. J. 2015. Productividad de híbridos varietales de maíz de grano amarillo para Valles Altos de México. Agron. Mesoam. 26(1):65-72. Doi.org/10.15517/am.v26i1.16921.

Vallejo, C. F. A. y Estrada, S. E. I. 2002. Interacción genotipo-ambiente. In: Vallejo, C. F. A. y Estrada, S. E. I. (Ed.). Mejoramiento genético de plantas. Universidad Nacional de Colombia. Palmira, Colombia. 189-202 pp.

Vargas, E. E. A.; Vargas, S. J. E. y Baena, G. D. 2016. Análisis de estabilidad y adaptabilidad de híbridos de maíz de alta calidad proteica en diferentes zonas agroecológicas de Colombia. Acta Agronómica. 65(1):72-79. Doi.org/10.15446/acag.v65n1.43417.

Yan, W.; Pageau, D.; Frégeau, R. J.; Lajeunesse, J.; Goulet, J.; Durand, J. and Marois, D. 2011. Oat mega-environments and test-locations in Quebec. Canadian J. Plant Sci. 91(4):643-649. Doi.org/10.4141/cjps10139.

Yan, W.; Frégeau, R. J.; Pageau, D. and Martin, R. 2016. Genotype-by-environment interaction and trait associations in two genetic populations of oat. Crop Sci. 56(3):1136-1145. Doi.org/10.2135/cropsci2015.11.0678.

Yang, R. C.; Crossa, J.; Cornelius, P. L. and Burgueño, J. 2009. Biplot analysis of genotype environment interaction: proceed with caution. Crop Sci. 49(5):1564-1576. Doi.org/10.2135/cropsci2008.11.0665.

Published

2022-11-22

How to Cite

Ponce-Encinas, María Corina, Fernando López-Morales, Julián Chura-Chuquija, Enrique Hernández-Leal, Gregorio Hernández-Salinas, and Agustín Aragón-García. 2022. “Genotype-Environment Interaction of Yield in Yellow Corn Hybrids, Using AMMI and SREG”. Revista Mexicana De Ciencias Agrícolas 13 (7). México, ME:1247-58. https://doi.org/10.29312/remexca.v13i7.3070.

Issue

Section

Articles

Most read articles by the same author(s)