Mapping of QTL in the Mutus#1 wheat line resistant to leaf spot

Authors

  • Mariel del Rosario Sánchez-Vidaña Division of Life Sciences-University of Guanajuato. Highway Irapuato-Silao km 9, Ex-Hacienda El Copal, Irapuato, Guanajuato. CP. 36500.
  • Mateo Vargas-Hernández Chapingo Autonomous University. Mexico-Texcoco Highway km 38.5, Texcoco, State of Mexico. CP. 56230
  • Xinyao He International Maize and Wheat Improvement Center. Mexico-Veracruz highway km 45, El Batán, Texcoco, State of Mexico. CP. 56237.
  • Carolina Paola Sansaloni International Maize and Wheat Improvement Center. Mexico-Veracruz highway km 45, El Batán, Texcoco, State of Mexico. CP. 56237.
  • Pawan Kumar-Singh International Maize and Wheat Improvement Center. Mexico-Veracruz highway km 45, El Batán, Texcoco, State of Mexico. CP. 56237.
  • Ana María Hernández-Anguiano Postgraduate in Phytosanitary-Phytopathology-Postgraduate College. Mexico-Texcoco Highway km 36.5, Montecillo, Texcoco, State of Mexico. CP. 56230.

DOI:

https://doi.org/10.29312/remexca.v13i7.3048

Keywords:

Mycosphaerella graminicola, Triticum aestivum, Zymoseptoria tritici

Abstract

Wheat leaf spot caused by Zymoseptoria tritici is a devastating disease in wheat cultivation internationally. Chemical control and the use of resistant varieties are the main control strategies. The International Maize and Wheat Improvement Center (CIMMYT) has wheat lines with quantitative resistance to the disease, so the objective was to map quantitative trait loci (QTL) associated with genetic resistance to leaf spot in the elite line Mutus#1 (resistant), in a population of 275 recombinant inbred lines (RILs) derived from the cross of Mutus#1 with the elite line Huirivis#1 (susceptible). In 2018 and 2019, a field experiment was established at the CIMMYT-Toluca station under an Alpha Lattice experimental design. An artificial epidemic was generated with Z. tritici and the area under the disease progress curve (AUDPC) was calculated. The 275 RILs and parents were sequenced using the DArTSeq platform. The linkage maps were constructed with the IciMapping program using phenotype and genotype information. Five minor-effect QTLs were identified, three located on chromosomes 1B, 4A and 4B and two on chromosome 5B, which explained less of the symptoms and production of pycnidia in adult plants carried by Mutus#1, they can be used with other resistance genes or QTLs to reduce the selection of new pathogenic strains of Z. tritici.

Downloads

Download data is not yet available.

References

Arraiano, L. S. and Brown, J. K. M. 2017. Sources of resistance and susceptibility to Septoria tritici blotch of wheat. Mol. Plant Pathol. 8(2):276-292. Bonnett, D. 2013. Capítulo XIV: estrategias para optimizar la selección asistida por marcadores (MAS) en el mejoramiento de cultivos. Es: fitomejoramiento fisiológico I: enfoques interdisciplinarios para mejorar la adaptación del cultivo. Reynolds, M. P.; Pask, A. J. D.; Mullan, D. M. and Chavez-Dulanto, P. N. (Ed.). Centro Internacional del Maíz y el Trigo (CIMMYT). El Batán, Estado de Mexico. 153-161 pp. Braun, H. J. y Payne, T. 2013. Capítulo I: fitomejoramiento en mega-ambientes. Fitomejoramiento fisiológico I: enfoques interdisciplinarios para mejorar la adaptación del cultivo. Reynolds, M. P.; Pask, A. J. D.; Mullan, D. M. and Chavez, D. P. N. (Ed.). Centro Internacional del Maíz y el Trigo (CIMMYT). El Batán, Estado de Mexico. 6-17 pp.

Brown, J. K. M.; Chartrain, L.; Lasserre, Z. P. and Saintenac, C. 2015. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol. 79:33-41.

Brunner, K.; Kovalsky, P. M. P.; Paolino, G.; Bürstmayr, H.; Lemmens, M.; Berthiller, F.; Schuhmacher, R. X.; Krska, R. and Mach, R. L. 2009. A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat. Analyts. Bioanal. Chem. 395(5):1385-1394.

Castro, A. C.; Golik, S. I. y Simón, M. R. 2015. Efecto de la mancha de la hoja sobre la duración del área foliar verde, dinámica del N, rendimiento y calidad de trigo. FAVE Sección Ciencias Agrarias. 14(2):1-16.

Chartrain, L.; Brading, P. A.; Makepeace, J. C. and Brown, J. K. M. 2004. Sources of resistance to Septoria tritici blotch and implications for wheat breeding. Plant Pathol. 53(4):454-460.

Collard, B. C. Y.; Jahufer, M. Z. Z.; Brouwer, J. B. and Pang, E. C. K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 142(1):169-196

Cordo, C. A.; Mónaco, C. I.; Altamirano, R.; Perelló, A. E.; Larrán, S.; Kripelz, N. I. and Simón, M. R. 2017. Weather conditions associated with the release and dispersal of Zymoseptoria tritici spores in the Argentine Pampas region. Inter. J. Agron. 1-13 pp.

Delobel, C.; Moens, W.; Querci, M.; Mazzara, M.; Cordeil, S. and Van, E. G. 2012. Maize seeds sampling and DNA extraction; report on the validation of a DNA extraction method from maize seeds and grains. European commission, directorate general-joint research centre institute for health and consumer protection (IHCP). Biotechnology and GMOs. 10-19 pp.

Dreisigacker, S.; Sehgal, D.; Reyes, J. A. E.; Luna, G. B.; Muñoz, Z. S.; Núñez, R. C.; Mollins, J. and Mall, S. (Ed.). 2016. CIMMYT wheat molecular genetics: laboratory protocols and applications to wheat breeding). Centro Internacional del Maíz y el Trigo (CIMMYT). El Batán, Estado de Mexico. 3-10 pp.

Dreisigacker, S.; Wang, X.; Martinez, C. B. A.; Jing, R. and Singh, P. K. 2015. Adult‑plant resistance to Septoria tritici blotch in hexaploid spring wheat. Theor. Appl. Genet. 128(11):2317-2329.

Estep, L. K.; Torriani, S. F. F.; Zala, M. X.; Anderson, N. P.; Flowers, M. D.; Mcdonald, B. A.; Mundt, C. C. and Brunner, P. C. 2015. Emergence and early evolution of fungicide resistance in North American populations of Zymoseptoria tritici. Plant Pathol. 64(4):961-971. Eyal, Z.; Scharen, A. L.; Prescott, J. M. and Van, G. M. 1987. The Septoria diseases of wheat: Concepts and methods of disease management. Centro Internacional del Maíz y el Trigo (CIMMYT). El Batán, Estado de Mexico. 10-28 pp. Ghaffary, T. M. S.; Chawade, A. and Singh, P. K. 2018. Practical breeding strategies to improve resistance to Septoria Tritici blotch of wheat. Euphytica. 214(7):1-18. García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México (UNAM). 5a (Ed.). México, DF. 42-46 pp.

Goudemand, E.; Laurent, V.; Duchalais, L.; Ghaffary, S. M. T.; Kema, G. H. J.; Lonnet, P.; Margalé, E. and Robert, O. 2013. Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat (Triticum aestivum L.). Mol. Breed. 32(3):563-584.

Gurung, S.; Mamidi, S.; Bonman, J. M.; Xiong, M.; Brown, G. G. and Adhikari, T. B. 2014. Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. Plos One. 9:e108179.

He, X.; Azzimonti, G.; Sánchez, V. M. R.; Pereyra, S. A.; Sansaloni, C.; Hernández, A. A. M.; Chawade, A. and Singh, P. K. 2021. Mapping for adult-plant resistance against Septoria tritici blotch in a common wheat line Murga. Phytopathology. 111(6):1001-1007.

Jeger, M. J. and Viljanen, R. S. L. H. 2001. The use of the area under the disease-progress curve (ABCPE) to assess quantitative disease resistance in crop cultivars. Theor. Appl. Genet. 102(1):32-40.

Knott, D. R. and Kumar, J. 1974. Comparison of early generation yield testing and a single seed descent procedure in wheat breeding. Crop Sci. 15(3):295-299.

Lan, C.; Zhang, Y.; Herrera, F. S. A.; Basnet, B. R.; Huerta, E. J.; Lagudah, E. S. and Singh, R. P. 2015. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor. Appl. Genet. 128(3):549-561.

Li, H.; Vikram, P.; Singh, R. P.; Kilian, A.; Carling, J.; Song, J.; Burgueno, F. J. A.; Bhavani, S.; Huerta, E. J.; Payne, T.; Sehgal, D.; Wenzl, P. and Singh, S. 2015. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics. 16(1):1-15.

Meng, L.; Li, H.; Zhang, L. and Wang, J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 3(3):269-283.

Mergoum, M.; Harilal, V. E.; Singh, P. K.; Adhikari, T. B.; Kumar, A.; Ghavami, F.; Elias, E.; Alamri, M. S. and Kianian S. F. 2013. Genetic analysis and mapping of seedling resistance to Septoria tritici blotch in ‘Steele-ND’/’ND 735’ bread wheat population. Cereal Res. Commun. 41(2):199-210.

Mehta Y. R. 2014. Wheat diseases and their management. ©Springer International Publishing Switzerland. 162-168 pp.

Miedaner, T. P.; Risser, S.; Paillard, T. Schnurbusch, B. Keller, L. Hartl, J. Holzapfel, V. K.; Ebmeyer, E. and Utz, H. F. 2012. Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol. Breed. 29(3):731-742.

Mirdita, V.; Liu, G.; Zhao, Y.; Miedaner, T.; Longin, C. F. H.; Gowda, M.; Mette, M. F. and Reif, J. C. 2015. Genetic architecture is more complex for resistance to Septoria tritici blotch than to Fusarium head blight in Central European winter wheat. BMC Genomics. 16(1):1-8.

Morais, D.; Laval, V.; Sache, I. and Suffert, F. 2015. Comparative pathogenicity of sexual and asexual spores of Zymoseptoria tritici (Septoria Tritici Blotch) on wheat leaves. Plant Pathol. 64(6):1429-1439.

Osman, M.; He, X.; Benedettelli, S.; Ali, S. and Singh, P. K. 2015. Identification of new sources of resistance to fungal leaf and head blight diseases of wheat. Eur. J. Plant Pathol. 145(2):305-320.

Orton, E. S.; Deller, S. and Brown, J. K. M. 2011. Mycosphaerella graminicola: from genomics to disease control. Mol. Plant Pathol. 12(5):413-424.

Patterson, H. D. and Williams, E. R. 1976. A new class of resolvable incomplete block designs. Biometrika. 63(1):83-92.

Piñera, C. F. J.; Autrique, E.; Valenzuela, A. J. L.; Singh, P. K.; Guzman, C.; He, X.; Lan, C. X.; Randhawa, M. S.; Huerta, E. J.; Ortiz, M. I. S. and Singh, R. P. 2017. Strategic research for developing improved wheat germplasm for Mexico. Es: proceedings of the 3rd international wheat yield potential workshop. Reynolds, M.; Molero, G. and McNab, A. (Ed.). Centro Internacional del Maíz y el Trigo (CIMMYT). Cd. Obregón, Sonora. 42-54. pp.

Risser, P.; Ebmeyer, E.; Korzun, V.; Hartl, L. and Miedaner, T. 2011. Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Phytopathology. 101(10):1209-1216.

Rodríguez, C. M. E.; Leyva, M. S. G.; Villaseñor, M. H. E.; Huerta, E. J.; Sandoval, I. J. S. y Santos, P. H. M. 2010. Relación de altura y competencia de plantas con incidencia y dispersión de Septoria tritici en trigo de temporal. Rev. Mex. Cienc. Agríc. 1(3):347-357.

Sánchez, V. M. R. Hernández, A. A. M.; Yáñez, M. M. J.; He, X. y Singh P. K. 2020. Situación actual de la mancha foliar del trigo causada por Zymoseptoria tritici en México. Rev. Fitotec. Mex. 43(4-A):583-590

Shaner, G. and Finney, R. E. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology. 67(8):1051-1056.

Simón, M. R.; Castillo, N. S. and Cordo, C. A. 2016. New sources of resistance to Septoria tritici blotch in wheat seedlings. Eur. J. Plant Pathol. 146(3):625-635.

Torres, A. y Pietragalla, J. 2013. Capítulo 19: Características morfológicas del cultivo. Fitomejoramiento fisiológico II: una guía de campo para la caracterización fenotípica de trigo. Pask, A. J. D., Pietragalla, J.; Mullan, D. M.; Chávez-Dulanto, P. N. and Reynolds, M. P. (Ed.). Centro Internacional del Maíz y el Trigo (CIMMYT). El Batán, Estado de Mexico. 106-112. pp.

Torriani, S. F. F.; Melichar, J. P. E.; Mills, C.; Pain, N.; Sierotzki, H. and Courbot, M. 2015. Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control. Fungal Genet. Biol. 79:8-12.

Valverde, R. 2007. Mapeo genético y detección de QTL en especies de Solanum. Agronomía Costarricense. 31(2):31-47.

Villaseñor, M. H. E. 2015. Sistema de mejoramiento genético de trigo en México. Rev. Mex. Cienc. Agríc. 11(esp.):2183-2189.

Waggoner, P. E. 1986. Progress curves of foliar diseases: their interpretation and use. Plant Dis. Epidemiol. 1:3-37.

Published

2022-11-22

How to Cite

Sánchez-Vidaña, Mariel del Rosario, Mateo Vargas-Hernández, Xinyao He, Carolina Paola Sansaloni, Pawan Kumar-Singh, and Ana María Hernández-Anguiano. 2022. “Mapping of QTL in the Mutus#1 Wheat Line Resistant to Leaf Spot”. Revista Mexicana De Ciencias Agrícolas 13 (7). México, ME:1195-1207. https://doi.org/10.29312/remexca.v13i7.3048.

Issue

Section

Articles

Most read articles by the same author(s)