Pseudomonas fluorescens UM270 promotes growth and production in husk tomato

Authors

  • Francisco Villaseñor-Tulais Facultad de Agrobiología ‘Presidente Juárez’-Universidad Michoacana de San Nicolás de Hidalgo. Paseo Lázaro Cárdenas 2290, Emiliano Zapata, Uruapan, Michoacán, México. CP. 60170
  • Selene Hernández-Muñoz Facultad de Agrobiología ‘Presidente Juárez’-Universidad Michoacana de San Nicolás de Hidalgo. Paseo Lázaro Cárdenas 2290, Emiliano Zapata, Uruapan, Michoacán, México. CP. 60170
  • Martha Elena Pedraza-Santos Facultad de Agrobiología ‘Presidente Juárez’-Universidad Michoacana de San Nicolás de Hidalgo. Paseo Lázaro Cárdenas 2290, Emiliano Zapata, Uruapan, Michoacán, México. CP. 60170
  • Ana Tztziqui Chávez-Bárcenas Facultad de Agrobiología ‘Presidente Juárez’-Universidad Michoacana de San Nicolás de Hidalgo. Paseo Lázaro Cárdenas 2290, Emiliano Zapata, Uruapan, Michoacán, México. CP. 60170
  • Gustavo Santoyo Instituto de Investigaciones Químico-Biológicas-Universidad Michoacana de San Nicolás de Hidalgo. Av. Universidad s/n, Edif. B-3, Ciudad Universitaria, Morelia, Michocán, México. CP. 58030
  • Ma. del Carmen Orozco-Mosqueda INBYTA Laboratorio, Departamento de Ingeniería Bioquímica y Ambiental-Tecnológico Nacional de México. Celaya, Guanajuato, México. CP. 38010

DOI:

https://doi.org/10.29312/remexca.v14i4.3017

Keywords:

Physalis ixocarpa, Pseudomonas fluorescens, agrochemicals, rhizobacteria

Abstract

One of the agroecological strategies that increases agricultural production is the use of bacterial inoculants, which lack the toxic effects that agrochemicals have. This work evaluated the effect of inoculation of the plant growth-promoting rhizobacterium Pseudomonas fluorescens UM270 on the cultivation cycle of husk tomato (Physalis ixocarpa) plants under field conditions (irrigation) in 2019. The results showed that plants inoculated with the rhizobacterium UM270 exhibited significant effects on plant height (14.64%), stem diameter (17.74%), biovolume index (35.14%) and fruit set production by 65.54%. This suggests that the strain UM270 of P. fluorescens is an excellent bioinoculant that improves the production of the husk tomato crop under field conditions.

Downloads

Download data is not yet available.

References

Aguirre-Medina, J. F. y Espinosa, M. J. A. 2016. Crecimiento y rendimiento de Capsicum annuum L. inoculado con endomicorriza y rizobacterias. Rev. Mex. Cienc. Agríc. 7(7):1539-1550. Doi: https://doi.org/10.29312/remexca.v7i7.148. DOI: https://doi.org/10.29312/remexca.v7i7.148

Ayala-Armenta, Q. A.; Tovar-Pedraza, J. M.; Apodaca-Sánchez, M. A.; Correia, K. C.; Sauceda-Acosta, C. P.; Camacho-Tapia, M. and Beltrán-Peña, H. 2020. Phylogeny and pathogenicity of soilborne fungi associated with wilt disease complex of tomatillo (Physalis ixocarpa) in northern Sinaloa, Mexico. Eur. J. Plant Pathol. 157(4):733-749. https://doi.org/10.1007/s10658-020-02030-9.

Caballero-Salinas, J. C.; Ovando-Salinas, S. G.; Núñez-Ramos, E. y Aguilar-Cruz, F. 2020. Sustratos alternativos para la producción de plántulas de tomate de cáscara (Physalis ixocarpa Brot.) en Chiapas. Siembra. 7(2):14-21. https://doi.org/10.29166/siembra. v7i2.1916.

Castro-Barquero, L.; Murillo-Roos, M.; Lorío, L. U. y Mata-Chinchilla, R. 2015. Inoculación al suelo con Pseudomonas fluorescens, Azospirillum oryzae, Bacillus subtilis y microorganismos de montaña (mm) y su efecto sobre un sistema de rotación soya-tomate bajo condiciones de invernadero. Agron. Costarricense. 39(1):21-36. https://revistas.ucr. ac.cr/index.php/agrocost/article/view/21787/21990.

Engels, J. M. M.; Ebert, A. W.; Thormann, I. and De Vicente, M. C. 2006. Centers of crop diversity and/or origin, genetically modified crops and implications for plant genetic resources conservation. Genetic Res. Crop Evol. 53(8):1675-1688. https://doi.org/10.1007/s10722-005-1215-y. DOI: https://doi.org/10.1007/s10722-005-1215-y

Flores, A.; Diaz, Z. J. T.; Orozco, M. M del C.; Chávez, A.; Santos, V. S.; Valencia, C. E. and Santoyo, G. 2020. Bridging genomics and field research: draft genome sequence of Bacillus thuringiensis CR71, an endophytic bacterium that promotes plant growth and fruit yield in Cucumis sativus L. 3 Biotech. 10(220):1-7. https://doi.org/10.1007/s13205-020-02209-1.

Garrido-Sanz, D.; Meier-Kolthoff, J. P.; Göker, M.; Martín, M.; Rivilla, R. and Redondo-Nieto, M. 2016. Genomic and genetic diversity within the Pseudomonas fluoresces complex. PLoS ONE. 11(2):1-30. https://doi.org/10.1371/journal.pone.0150183. DOI: https://doi.org/10.1371/journal.pone.0150183

Hernández-León, R.; Rojas-Solís, D.; Contreras-Pérez, M.; Orozco-Mosqueda, M. D. C.; Macías-Rodríguez, L. I.; Reyes-Cruz, H.; Valencia-Cantero, E. and Santoyo, G. 2015. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Control. 81(2):83-92. https://doi.org/10.1016/j.biocontrol.2014.11.011. DOI: https://doi.org/10.1016/j.biocontrol.2014.11.011

Orozco-Mosqueda, M. del C. and Santoyo, G. 2021. Plant-microbial endophytes interactions: Scrutinizing their beneficial mechanisms from genomic explorations. Current Plant Biol. 25(1):100189. https://doi.org/10.1016/j.cpb.2020.100189.

Orozco-Mosqueda, M.; Santoyo, G. and Glick, B. R. 2023. Recent advances in the bacterial phytohormone modulation of plant growth. Plants. 12(3):606. https://doi.org/10.3390/ plants12030606.

Patel, P.; Shah, R.; Joshi, B.; Ramar, K. and Natarajan, A. 2019. Molecular identification and biocontrol activity of sugarcane rhizosphere bacteria against red rot pathogen Colletotrichum falcatum. Biotechnology Reports. 21(1):1-8. https://doi.org/ 10.1016/j. btre.2019.e00317.

Ramírez-Cariño, H. F.; Morales, I.; Guadarrama-Mendoza, P. C.; González-Terreros, E.; Martínez-Gutiérrez, G. A.; Dunlap, C. A. and Valadez-Blanco, R. 2023. Biofertilizing effect of putative plant growth promoting rhizobacteria in vitro and in tomatillo seedlings (Physalis ixocarpa Brot.). Sci. Hortic. 308(2):111567. https://doi.org/10.1016/j.scienta.2022. 111567.

Rocha-Granados, M. A. D. C.; Cubillo-Constantino, M. A.; Delgado-Valerio, P.; García-Magaña, J. y Santoyo, G. 2019. Aumento de tolerancia de Casuarina equisetifolia a cloruro de sodio mediado por Pseudomonas fluorescens. Biotecnología en el Sector Agropecuario y Agroindustrial. 17(2):15-23. Doi: http://dx.doi.org/10.18684/bsaa.v17n2.1249.

Rojas-Solis, D.; Hernandez-Pacheco, C. E. and Santoyo, G. 2016. Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Physalis ixocarpa Brot. ex Horm.). Rev. Chapingo Ser. Hortic. 22(1):45-57. https://doi.org/10.5154/r.rchsh.2015.06.009. DOI: https://doi.org/10.5154/r.rchsh.2015.06.009

Santiaguillo-Hernández, J. F. y Blas-Yáñez, S. 2009. Aprovechamiento tradicional de las especies de Physalis en México. Rev. Geogr. Agríc. 43(2):81-86. http://hdl.handle.net/20.500. 11799/39862.

V14(4)

Published

2023-06-19

How to Cite

Villaseñor-Tulais, Francisco, Selene Hernández-Muñoz, Martha Elena Pedraza-Santos, Ana Tztziqui Chávez-Bárcenas, Gustavo Santoyo, and Ma. del Carmen Orozco-Mosqueda. 2023. “Pseudomonas Fluorescens UM270 Promotes Growth and Production in Husk Tomato”. Revista Mexicana De Ciencias Agrícolas 14 (4). México, ME:627-32. https://doi.org/10.29312/remexca.v14i4.3017.

Issue

Section

Investigation notes

Most read articles by the same author(s)