Conservation agriculture: an alternative for climate change mitigation in the semiarid central plateau of Mexico
DOI:
https://doi.org/10.29312/remexca.v14i6.2957Keywords:
carbon, climate change, conservation agriculture, organic matter, tillageAbstract
Modifications produced by conservation agriculture on the dynamics of carbon in the soil result in an increase in carbon in the soil fraction and greatly reduce carbon oxidation processes by decreasing the mechanical manipulation of the soil. The objective of this study was to evaluate the cumulative effects of 25 years of conservation agriculture as a means to improve the resilience capacity of agricultural soils in the face of climatic fluctuations and promote increased yields, decreased erosion and greenhouse gas emissions. In a long-term experiment (1995-2020), under an irrigated corn-triticale rotation, the following two soil management systems were evaluated: 1) conventional tillage (Br + Ra); and 2) zero tillage plus 33% soil cover with harvest residues (LC+33% C). The variables evaluated were: soil organic carbon, stability of aggregates in water through mean weight diameter (MWDa), saturated hydraulic conductivity (Ks), bulk density (rb) and grain and forage yield. The results showed that, in LC + 33%, carbon presented significantly higher values of SOC (23.8 Mg ha-1), MWDa (1.2 mm), Ks (8.5 cm h-1) and lower rb (1.19 Mg m-3) vs Br + Ra, which is favorable for the sustainability and resilience of the soil structural system. CA improves the soil variables assessed and improves soil quality by increasing soil organic carbon.
Downloads
References
Alonso, B. M. y Aguirre, M. J. F. 2011. Efecto de la labranza de conservación sobre las propiedades del suelo. Terra Latinoam. 29:113-121.
Bautista, C. A.; Etchervers, B. J. D.; Del Castillo, R. F. y Gutiérrez, C. 2004. La calidad del suelo y sus indicadores. Ecosistemas. 13:90-97.
Bedard-Haughn, A.; Jongbloed, F.; Akkerman, A. J.; Uijl, E. J. Y. T. and Pennock, D. 2006. The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes. Geoderma. 296-306 pp.
Bernoux, M.; Feller, C.; Cerri, C. C.; Eschenbrenner, V. and Cerri, P. E. C. 2006. Soil carbon sequestration. In: Roose, E. J.; Lal, R.; Feller, C.; Berthès, B. and Stiwart, B. A. Ed. Soil erosion and carbon dynamics. Adv. Soil Sci. Taylor & Francis. Boca Ratón, FL. USA. 15-26 pp.
Beuchelt, T. D.; Camacho, V. C. T.; Gӧhring, L.; Hernández, R. V. M.; Hellín, J.; Sonder, K. and Erenstein, O. 2015. Social and income trade-offs of conservation agriculture practices on crop residue use in Mexico central highland. Agric. Syst. 134:61-75.
Bone, J.; Head, M.; Barraclough, D.; Archer, M.; Scheib, C.; Flight, D. and Voulvoulis, N. 2010. Soil quality assessment under emerging regulatory requirement. Environ. Inter. 36:609-622.
Bronick, C. J. and Lal, R. 2005. Soil structure and management: a review. Geoderma. 124:3-22.
Burbano-Orjuela, H. 2018. El carbono orgánico del suelo y su papel frente al cambio climático. Rev. Mex. Cienc. Agric. 35(1):82-96 Doi: http://dx.doi.org/1022267/rcia. 183501.85.
Cadena, B. P. D.; Egas, D.; Ruiz, H.; Mosquera, J. y Benavides, O. 2012. Efecto de cinco sistemas de labranza, en la erosión de un suelo Vitric haplustand, bajo cultivo de papa (Solanum tuberosum L.). Rev. Mex. Cienc. Agric. 29(2):116-128.
Carvalho-dos Santos, D.; Rodríguez-de Lima, C. L.; Nailto-Pillon, C. y Filippini-Alba, J. M. 2012. Distribución de la materia orgánica en clases de agregados en un Latosol arcilloso rojo bajo forestación y pastizal. Agrociencia. 46:231-241.
Castellanos-Navarrete, A.; Rodríguez, A. C.; Goede, M. R. G.; Kooistra, M. J.; Sayre, K. D.; Brussaard, L. and Pulleman, M. M. 2012. Earthworm activity and soil structural changes under conservation agriculture in Central Mexico. Soil Tillage Res. 123:61-70.
Caviglia, O. P.; Wingeyer, A. B. y Novelli, L. E. 2016. El rol de los suelos agrícolas frente al cambio climático. Serie de Extensión INTA Paraná. 78:27-32.
CENAPROS. 2001. Centro Nacional de Investigación para Producción Sostenible. Manual de labranza de conservación. Manual núm. 1. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. 85 p.
Cotler, H.; Martínez, M. y Etchevers, J. D. 2016. Carbono orgánico en suelos agrícolas de México: Investigación y Políticas Públicas. Terra Latinoam. 34:125-138.
De León-González, F.; Hernández, M. S.; Etchevers, J. D.; Payán, Z. F. and Ordaz, Ch. V. 2000. Short-term compost effect on macroaggregation in a Sandy soil under low rainfall in the valley of Mexico. Soil Tillage Res. 56:213-217.
Dendooven, L.; Patiño, Z.; Verhulst, N.; Luna, G. M.; Marsch, R. and Govaerst, B. 2012. Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agric. Ecosyst. Eviron. 152:50-58.
Docampo, R. 2010. La importancia de la materia orgánica del suelo y su manejo de producción frutícola. Serie de actividades de difusión núm. 687. Las Brujas: INIA-Estación Experimental Wilson Ferreira Aldunate. 81-88 pp.
FAO. 2017. Food and Agriculture Organization of the United Nations. Conservation Agriculture. Food and Agriculture Organization of the United Nations. 17480:1-2.
Follett, R. F.; Castellanos, Z. J. and Buenger, E. D. 2005. Carbon dinamycs and sequestration in an irrigated Vertisol in Central Mexico. Soil Tillage Res. 83:148-158.
Franzluebbers, A. J.; Haney, R. L.; Honeycutt, C. W.; Schomberg, H. H. and Hons, F. M. 2000. Flux of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J. 64:613-623.
Fuentes, M. B.; Govaerst, C.; Hidalgo, J.; Etchevers, I.; González, M. J. M.; Hernández, H.; Sayre, K. D. and Dendooven, L. 2010. Organic carbón and stable 13C isotope in conservation agriculture and conventional systems. Soil Biol. Biochem. 42:551-557.
Fuentes, J.; Magaña, C.; Suárez, L.; Peña, R.; Rodríguez, S. y Ortiz, B. 2001. Análisis químico y digestibilidad “in vitro” de rastrojo de maíz (Zea mays L.). Rev. Agron. Mesoam. 12(2):189-192.
González-Sánchez, E. J.; Ordóñez-Fernández, R.; Carbonell-Bojollo, R.; Veroz-González, O. and Gil-Ribes, J. A. 2012. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 122:52-60.
Jury, W. A.; Gardner, W. R. and Gardner, W. H. 1991. Soil physics. John Wiley & Sons. New York. 328 p.
Lal, R. 2003. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit. Rev. Plant Sci. 22:151-184.
Lal, R. 2007. Constraints to adopting no-till farming in developing countries. Soil Tillage Res. 94:1-3.
López, B. W.; Reynoso, R. C.; López, J. M.; Camas, R. G.; Tasistro, A. 2018. Diagnóstico de la compactación en suelos cultivados con maíz en la región Fraylesca, Chiapas. Rev. Mex. Cienc. Agríc. https://doi.org/10.29312/remesca.v9i1.848.
Martínez, G. M. A. y Osuna, C. E. S. 2017. Impacto de la agricultura de conservación en propiedades físicas del suelo y rendimiento de la rotación maíz-avena/triticale forrajero de riego. Folleto técnico. MX-0-310305-25-03-17-09-48. San Luis Potosí, México. 33 p.
Osuna-Ceja, E. S.; Figueroa-Sandoval, B.; Oleschko, K.; Flores-Delgadillo, Ma. L.; Martínez-Menes, M. R. y González-Cossío, F. V. 2006. Efecto de la estructura del suelo sobre el desarrollo radical del maíz con dos sistemas de labranza. Agrociencia. 40:27-38.
Rachman, A.; Anderson, S.; Gantzer, C. and Thopnson, A. 2003. Influence of long-term cropping systems on soil physical properties related to soil erodibility. Soil Sci. Soc. Am. J. 67:637-644.
Reicosky, D. C. 2011. Conservation agriculture: global environmental benefits of soil carbon management. In Fifth World Congress on Conservation Agriculture. 1:3-12.
Reynols, W. and Elrick, D. 1990. Ponded infiltration from a single ring: Analysis of Steady Flow. Soil Sci. Soc. Am. J. 54:1233-1241.
Salinas, G. J. R.; Báez, A. D. G.; Tiscareño, M. L. and Rosales, E. R. 2002. Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico. Soil Tillage Res. 59:67-79.
Sánchez, F. A.; Marín, H. G. and Mejía, E. C. 2008. Impacts and plan of environmental management of the conventional tillage. CES Med. Vet. y Zootec. 3(1):36-40.
Sandoval-Estrada, M.; Stolpe-Lau, N.; Zagal-Venegas, E.; Mardones-Flores, M. y Celis-Hidalgo, J. 2008. Aporte de carbono orgánico de la labranza cero y su impacto en la estructura de un Andisol de la Precordillera Andina Chilena. Agrociencia. 42:139-149.
Sarabia, M. I. F.; Cisneros, R. A.; Aceves, J. D. A.; Durán, H. M. G. y Castro, J. L. 2011. Calidad del agua de riego en suelos agrícolas y cultivos del valle de San Luís Potosí, México. Rev. Int. Contam. Ambie. 27(2):103-113.
SAS 2013. Statistical Analysis Software. Versión 9.1.3, edit. SAS Institute Inc. Cary, N.C., USA. http://www.sas.com/en us/sofware/analytics/stat.html#>.
SEMARNAT. 2000. Secretaría de Medio Ambiente y Recursos Naturales. Especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. No. NOM-021-SEMARNAT-2000. Inst. Diario Oficial de la Federación, México. 85 p. http://www.semarnat.gob.mx/node/18.
SIAP-SADER. 2019. Servicio de Información Agroalimentaria y Pesquera, Secretaría de Agricultura y Desarrollo Rural. México, DF.
Udawatta, R. P.; Kremer, R. J.; Garrett, H. E. and Anderson, S. H. 2009. Soil enzyme activities and physical properties in a watershed managed under agroforestry and row-crop systems. Agric. Ecosyst. Environ. 131:98-104.
Van der Wal, A. and De Boer, W. 2017. Dinner in the dark: illuminating drivers of soil organic matter decomposition. Soil Biol. Biochem. 105:45-48.
Villegas, D. G.; Bolaños, M. A. y Olguín, P. L. 2001. La ganadería en México. Temas selectos de geografía de México. 1ra. Ed. México, DF.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.