Residual effectiveness of insecticides in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in tomato cultivation

Authors

  • Arturo Peláez Arroyo General Directorate of Agricultural Technological Education and Marine Sciences-Agricultural Technological Baccalaureate Center 316. La Concepción Enyege, Ixtlahuaca de Rayón, State of Mexico. CP. 50740
  • Mateo Vargas Hernández Autonomous University Chapingo-Department of Soils and Department of Agricultural Parasitology. Mexico-Texcoco highway km 38.5. Chapingo, State of Mexico, Mexico. CP. 56230
  • Marcelo Acosta Ramos Autonomous University Chapingo-Department of Soils and Department of Agricultural Parasitology. Mexico-Texcoco highway km 38.5. Chapingo, State of Mexico, Mexico. CP. 56230
  • Sergio Ayvar Serna Superior Agricultural College of the State of Guerrero. Av. Guerrero 81 first floor, Col. Center, Iguala, Guerrero. CP. 40000
  • José Francisco Díaz Nájera Superior Agricultural College of the State of Guerrero. Av. Guerrero 81 first floor, Col. Center, Iguala, Guerrero. CP. 40000
  • Manuel Alejandro Tejeda Reyes Autonomous University Chapingo-Department of Soils and Department of Agricultural Parasitology. Mexico-Texcoco highway km 38.5. Chapingo, State of Mexico, Mexico. CP. 56230

DOI:

https://doi.org/10.29312/remexca.v13i4.2937

Keywords:

Bemisia tabaci, Solanum lycopersicum, insecticides synthetic, organic

Abstract

Bemisia tabaci (Genn.) is one of the main pests in the cultivation of tomato (Solanum lycopersicum L.), which transmits phytopathogenic viruses responsible for severe physiological damage and loss of profitability of the crop. The protection of the plant against viral vectors in the first weeks after transplantation is essential to ensure production. The experiment was conducted in a greenhouse and repeated twice; tomato seedlings of the Río Grande cultivar were used to evaluate the residual effectiveness of five synthetic, four botanical insecticides and one mineral oil. The density of B. tabaci eggs and the percentage of effectiveness at 0, 5 and 10 days after the application (DAA) with insecticides were evaluated. The organo-synthetic treatment with the best effectiveness was Sivanto® Prime (Flupyradifurone) in foliar applications and in the soil; within the natural products, the best treatment was PHC® Neem® (Azadirachtin) in foliar applications; both showed effectiveness of 99.96-88.47% and 65.87-43.5%, respectively, at 0, 5 and 10 DAA in the two trials. Information on the residuality and effectiveness of the insecticides evaluated will contribute to complement the optimal management of B. tabaci.

Downloads

Download data is not yet available.

References

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2):265-267. DOI: https://doi.org/10.1093/jee/18.2.265a

Argerich, C. y Troilo, L. 2011. Diagnóstico socioeconómico del sector hortícola argentino. Aspectos generales del cultivo de tomate In: manual de buenas prácticas agrícolas en la cadena del tomate. FAO. Bs. As. Argentina. (Ed.). 144-145 pp.

Altiara. 2022. Insecticida Biorracional Asphix 90®. https://altiara.mx/wp-content/uploads/fichas/ Asphix-Ficha-Tecnica.pdf. Bautista, M. N.; Chavarrín, C. y Valenzuela, F. 2010. Tomate: tecnología para su producción en Invernadero. 3ª (Ed.). Colegio de Postgraduados. Montecillos, Estado de México, México. 12-13 pp.

Brück, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kühnhold, J.; Klueken, A. M. and Steffens, R. 2009. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Protec. 28(10):838-844. https://doi.org/10.1016/j.cropro.2009.06.015. DOI: https://doi.org/10.1016/j.cropro.2009.06.015

Caballero, R.; Cyman, S. and Schuster, D. J. 2013. Monitoring insecticide resistance in biotype B of Bemisia tabaci (Hemiptera: Aleyrodidae) in Florida. Florida Entomologist. 96(4):1243-1256. https://doi.org/10.1653/024.096.0402. DOI: https://doi.org/10.1653/024.096.0402

Carvalho, S. S.; Vendramim, J. D.; Pitta, R. M. y Forim, M. R. 2012. Eficiencia de nanoformulaciones de aceite de neem para Bemisia tabaci (GENN.) Biotipo B (Hemiptera: Aleyrodidae). Semina. Ciências Agrárias. 33(1):193-201. DOI: https://doi.org/10.5433/1679-0359.2012v33n1p193

De Almeida, M. M.; Quintela, E. D.; Mascarin, G. M.; Fernandes, P. M. and Arthurs, S. P. 2014. Management of Bemisia tabaci biotype B with botanical and mineral oils. Crop Protec. 66:127-132. https://doi.org/10.1016/j.cropro.2014.09.006. DOI: https://doi.org/10.1016/j.cropro.2014.09.006

Dempsey, M.; Rileyt, D. G. and Srinivasan, R. 2017. Insecticidal effects on the spatial progression of tomato yellow leaf curl virus and movement of its whitefly vector in tomato. J. Econ. Entomol. 110(3):875-883. https://doi.org/10.1093/jee/tox061 Fang, Y.; Jiao, X.; Xie, W.; Wang, S.; Wu, Q.; Shi, X. and Zhang, Y. 2013. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Informes Científicos. 3(1):1-5. DOI: https://doi.org/10.1093/jee/tox061

Ghanim, M. 2014. A review of the mechanisms and components that determine the transmission efficiency of tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res. 186:47-54. DOI: https://doi.org/10.1016/j.virusres.2014.01.022

Gastélum, L. R.; Godoy, A. T. R.; López, M. M.; Yáñez, J. M. G.; Inzunza, C. J. F. y Avendaño, M. F. 2014. Rotación de insecticidas para el manejo de mosca blanca Bemisia tabaci biotipo b Genn. (Hemiptera: Aleyrodidae) y madurez irregular en frutos de tomate bajo casa sombra. Entomol. Mex. 1:846-851.

Gómez, P.; Cubillo, D.; Mora, G. A. y Hilje, L. 1997. Evaluación de posibles repelentes de Bemisia tabaci: II. Extractos vegetales. Manejo integrado de plagas. Costa Rica. 46:17-25.

Jeschke, P.; Haas, M.; Nauen, R.; Gutbrod, O.; Beck, M. E.; Matthiesen, S. and Velten, R. 2015. Sivanto®. A novel insecticide with a sustainable profile. In: Maienfisch, P. and Stevenson, T. M. (Ed.). Discovery Synthesis of Crop Protection Products. 24:331-344. Kagabu, S. 2011. Discovery of imidacloprid and further developments from dtrategic molecular designs. Rev. de Química Agrícola y Alimentaria. 59(7):2887-2896. https://doi.org/ 10.1021/jf101824y. DOI: https://doi.org/10.1021/bk-2015-1204.ch024

Larew, H. G. and Locke, J. C. 1990. Repellency and toxicity of a horticultural oil against whiteflies on chrysanthemum. HortScience. 25(11):1406-1407. https://doi.org/10.21273/ HORTSCI.25.11.1406.

Liu, X. C.; Hu, J. F.; Zhou, L. and Liu, Z. L. 2014. Evaluation of fumigant toxicity of essential oils of Chinese medicinal herbs against Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). J. Entomol. Zool. Studies. 2(3):164-169.

Lugo, M. O. Y.; Guzmán, U. R.; García, E. R. S. y León, F. J. 2011. Geminivirus transmitidos por mosca blanca (Bemisia tabaci) en tomate del Valle Agrícola de Culiacán, Sinaloa. Rev. Mex. Fitopatol. 29(2):109-118.

MahaLakshmi, M. S.; Sreekanth, M.; Adinarayana, M. and Koteswara, R. Y. 2015. Efficacy of some novel insecticide molecules against incidence of whiteflies (Bemisia tabaci Genn.) and occurrence of yellow mosaic virus (YMV) disease in urdbean. Int. J. Pure App. Biosci. 3(5):101-106.

Molina, N. 2001. Uso de extractos botánicos en control de plagas y enfermedades. Manejo integrado de plagas. Costa Rica. 59(59):76-77.

Navarrete, B.; Valarezo, O.; Cañarte, E. y Solórzano, R. 2017. Efecto del nim (Azadirachta indica JUSS.) sobre Bemisia tabaci GENNADIUS (Hemiptera: aleyrodidae) y controladores. Rev. de Ciencias de la Vida. 25(1):33-44. https://doi.org/10.17163/lgr.n25.2017.03. Navas, C. J.; Fiallo, O. E. and Sánchez, C. S. 2011. Emerging virus diseases transmitted by whiteflies. Ann. Review Phytopathol. 49(1):219-248. DOI: https://doi.org/10.17163/lgr.n25.2017.03

Nauen, R.; Stumpf, N. and Elbert, A. 2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag. Sci. 58(9):868-875. https://doi.org/10.1002/ps.557. DOI: https://doi.org/10.1002/ps.557

Nauen, R.; Reckmann, U.; Thomzik, J. and Thielert, W. 2008. Biological profile of spirotetramat (Movento®)- a new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer Crop Sci. J. 61(2):245-278. Nauen, R.; Jeschke, P.; Elten, R.; Beck, M.; Ebbinghaus-Kintscher, U.; Thielert, W.; Wölfel, K.; Haas, M.; Kunz, K. and Raupach, G. 2015. Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag. Sci. 71(6):850-862. Doi:10.1002/ps.3932. Roditakis, E.; Stavrakaki, M.; Grispou, M.; Achimastou, A.; Van Waetermeulen, X.; Nauen, R. and Tsagkarakou, A. 2017. Flupyradifurone effectively manages whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) and tomato yellow leaf curl virus in tomato. Pest Manag. Sci. 73(8):1574-1584. Doi: 10.1002/ps.4577. https://doi.org/10.1002/ps.4577. DOI: https://doi.org/10.1002/ps.4577

Rosen, R.; Kanakala, S.; Kliot, A.; Cathrin, P. B.; Farich, B. A.; Santana-Magal, N.; Elimelech, M.; Kontsedalov, S.; Lebedev, G.; Cilia, M. and Ghanim, M. 2015. Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr Opin Virol. 15:1-8. Doi: 10.1016/j.coviro.2015.06.008. Epub 2015 Jul 18. PMID: 26196230. DOI: https://doi.org/10.1016/j.coviro.2015.06.008

SAS Institute. 2018. SAS/SAT user’s guide. Versión 6.4. SAS Institute. Cary, NC, USA.

SIAP. 2016. Servicio de Información Agroalimentaria y Pesquera. Atlas Agroalimentario 2016. Servicio de Información Agroalimentaria y Pesquera, México.

Silva, V. S.; Carissimi, B. M. I.; Freitas, B. A.; Luís, G. A.; Vicentini, L. R. and Bueno, F. C. 2012. Effects of insecticides used in Bemisia tabaci (Gennadius) biotype B control and their selectivity to natural enemies in soybean crop. Semina. Ciencias Agrarias Londrina. 33(5):1809-1817. http://dx.doi.org/10.5433/1679-0359.2012v33n5p1809. Smith, H. A. and Giurcanu, M. C. 2014. New insecticides for management of tomato yellow leaf curl, a virus vectored by the silverleaf whitefly, Bemisia tabaci. J. Insect Sci. 14(1):1-4. https://doi.org/10.1093/jisesa/ieu045. DOI: https://doi.org/10.1093/jisesa/ieu045

Sparks, T. C.; Crossthwaite, A. J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F. and Wessels, F. J. 2020. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification a tool for resistance management. Pesticide Biochem. Physiol. 167:104587. https://doi.org/10.1016/j.pestbp.2020.104587.

Varela, F. S. E.; Camacho, C. R.; Briones, E. F. y López, S. J. A. 2013. Aceites agrícolas para el control de Diaphorina citri (Hemiptera: Liviidae) en limón italiano de Tamaulipas. Memorias In: 25° Encuentro Nacional de Investigación Científica y Tecnológica del Golfo de México. 4-9 pp.

Xie, W.; Wu, Q. J.; Xu, B. Y.; Wang, S. L. and Zhang, Y. J. 2011. Evaluation on the effect of spirotetramat on controlling Bemisia tabaci. China Vegetables. 14:69-73. Xie, W.; Liu, Y.; Wang, S.; Wu, Q.; Pan, H.; Yang, X.; Guo, L. and Zhang, Y. 2014. Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage. J. Insect Sci. 14:1-7. https://doi.org/10.1093/jisesa/ieu123. DOI: https://doi.org/10.1093/jisesa/ieu123

Published

2022-06-21

How to Cite

Peláez Arroyo, Arturo, Mateo Vargas Hernández, Marcelo Acosta Ramos, Sergio Ayvar Serna, José Francisco Díaz Nájera, and Manuel Alejandro Tejeda Reyes. 2022. “Residual Effectiveness of Insecticides in Bemisia Tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Tomato Cultivation”. Revista Mexicana De Ciencias Agrícolas 13 (4). México, ME:675-86. https://doi.org/10.29312/remexca.v13i4.2937.

Issue

Section

Articles

Most read articles by the same author(s)