Biostimulants in the quality of habanero pepper fruits
DOI:
https://doi.org/10.29312/remexca.v12i8.2900Keywords:
Bacillus, Trichoderma, biofertilizers, vegetablesAbstract
The production of habanero pepper is mainly done with chemical fertilization, which can be inefficient since much of the applied fertilizer is released into the environment and can often become unavailable to plants. One way in which the use of chemical fertilizers can be reduced and the absorption of nutrients by the crop can be improved is by using biostimulants in the fertilization of plants. The objective of the work was to evaluate three microbial biostimulants on seeds, seedlings and the quality of habanero pepper fruit under protected macro tunnel conditions. The work was carried out in 2021 at the Tecnológico Nacional de México, Úrsulo Galván campus. The habanero pepper seeds used were of the Jaguar variety provided by the Cotaxtla Experimental Field- National Institute of Forestry, Agricultural and Livestock Research. The treatments evaluated were: 1) T22®+mycorrhizae INIFAP®; 2) Mix®; 3) Genifix®; and 4) control. An evaluation of the treatments in seed germination, growth and biomass of seedlings and quality of habanero pepper fruits was carried out. There were no significant differences in seed germination, but in height and dry weight of seedlings at 20 days after inoculation, since the seeds inoculated with the biostimulant Genifix were the ones that reached the highest height and dry weight. In terms of fruit size and weight, the plants treated with the biostimulants produced significantly larger and heavier fruits than the control plants.
Downloads
References
Bulgari, R.; Franzoni, G. and Ferrante, A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy. 9(306):1-30. https://doi.org/10.3390/agronomy 9060306.
Calvo, P.; Nelson, L. and Kloepper, J. W. 2014. Agricultural uses of plant biostimulants. Plant Soil. 383(2014):3-41. DOI: https://doi.org/10.1007/s11104-014-2131-8
Candelero, D. J.; Cristóbal, A. J.; Reyes, R. A.; Tun, S. J. M.; Gamboa, A. M. M. y Ruíz, S. E. 2015. Trichoderma spp. promotoras del crecimiento en plántulas de Capsicum chinense Jacq. y antagónicas contra Meloidogyne incognita. ΦYTON. 84(1):113-119.
Corrales, R. L. C.; Caycedo, L. L.; Gómez, M. M. A.; Ramos, R. S. J. y Rodríguez, T. J. N. 2017. Bacillus spp: una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova. 15(27):45-65. https://doi.org/10.22490/24629448.1958. DOI: https://doi.org/10.22490/24629448.1958
Du-Jardin, P. 2015. Plant biostimulants: definition, concept, main categories, and regulation. Sci. Hortic. 196(2015):3-14. http://dx,doi.org/10.1016/j.scienta.2015.09.021. DOI: https://doi.org/10.1016/j.scienta.2015.09.021
D’Addabbo, T.; Laquale, S.; Perniola, M. and Candido, V. 2019. Biostimulants for plant growth promotion and sustainable management of phytoparasitic nematodes in vegetable crops. Agronomy. 9(616):1-10. https://doi.org/10.3390/agronomy9100616.
Daverede, I. C.; Kravchenko, A. N.; Hoeft, R. G.; Nafziger, E. D.; Bullock, D. G.; Warren, J. J. and Gonzini, L. C. 2004. Phosphorus runoff from incorporated and surface-applied liquid swine manure and phosphorus fertilizer. J. Environ. Quality. 33(4):1535-1544. https://doi.org/10.2134/jeq2004.1535. DOI: https://doi.org/10.2134/jeq2004.1535
Diánez, F.; Santos, M.; Carretero, F. and Marín, F. 2018. Biostimulant activity of trichoderma saturnisporum in melon (Cucumis melo). HortScience. 53(6):810-815. https://doi.org/ 10.21273/hortsci13006-18.
Díaz, G.; Rodríguez, G.; Montana, L.; Miranda, T.; Basso, C. y Arcia, M. 2020. Efecto de la aplicación de bioestimulantes y Trichoderma sobre el crecimiento en plántulas de maracuyá (Passiflora edulis Sims) en vivero. Bioagro. 32(3):195-204. https://revistas.uclave.org/ index.php/bioagro/article/view/2787.
Ezziyyani, M.; Sánchez, C. P.; Ahmed, A. S.; Requena, M. E. y Castillo, M. E. C. 2004. Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L.). Anales de Biología. 26:35-45. https://revistas.um.es/analesbio/article/view/30441.
Gamboa-Angulo, J.; Ruíz-Sánchez, E.; Alvarado-López, C.; Gutiérrez-Miceli, F.; Ruíz-Valdiviezo, V. M. y Medina-Dzul, K. 2020. Efecto de biofertilizantes microbianos en las características agronómicas de la planta y calidad del fruto del chile xcat´ik (Capsicum annuum L.). Terra Latinoam. 38(4):817-826. https://doi.org/10.28940/terra.v38i4.716.
Grageda-Cabrera, O. A.; Díaz-Franco, A.; Peña-Cabriales, J. J. y Vera-Núñez, J. A. 2012. Impacto de los biofertilizantes en la agricultura. Rev. Mex. Cienc. Agríc. 3(6):1261-1274.
Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T. and Yermiyahu, U. 2015. The use of biostimulants for enhancing nutrient uptake. In: advances in agronomy. Sparks, D. L. (Ed.). Vol. 129. Elsevier Inc. Netherlands. 141-174 pp. https://doi.org/10.1016/bs.agron. 2014.10.001. DOI: https://doi.org/10.1016/bs.agron.2014.10.001
Hernández, M. S.; Novo, S. R.; Mesa, P. M. A.; Ibarra, M. A. y Hernández, R. D. 2017. Capacidad de Trichoderma spp. como estimulante de la germinación en maíz (Zea mays L.) y frijol (Phaseolus vulgaris L.). Rev. Gest. Con. Des. Loc. 4(1):19-23.
Kaymak, H. C.; Guvenc, I.; Yarali, F. and Donmez, M. F. 2009. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish J. Agric. Fores. 33(2):173-179. https://doi:10.3906/tar-0806-30.
Kokalis-Burelle, K.; Vavrina, C. S.; Rosskopf, E. N. and Shelby, R. A. 2002. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant and Soil. 238:257-266. https://doi.org/10.1023/A:1014464716261. DOI: https://doi.org/10.1023/A:1014464716261
Luna, M. L.; Martínez, P. R. A.; Hernández, I. M.; Arvizu, M. S. M. y Pacheco, A. J. R. 2013. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Rev. Fitotec. Mex. 36(1):63-69.
Madhavi, M.; Kumar, C. P. C.; Reddy, D. R. R. and Singht, T. K. 2006. Integrated management of wilt of chilli incited by Fusarium solani. Ind. J. Plant Protec. 34(2):225-228.
Miguel-Ferrer, L.; Romero-Arenas, O.; Andrade-Hoyos, P.; Sánchez-Morales, P. and Rivera-Tapia, J. A. 2021. Antifungal activity of Trichoderma harzianum and T. koningiopsis against Fusarium solani in seed germination and vigor of Miahuateco chili seedlings. Rev. Mex Fitopatol. 39(2):228-247.
Ramírez-Vargas, B. A.; Carrillo-Ávila, E.; Obrador-Olán, J. J.; Coh-Méndez, D.; Monsalvo-Espinosa, A. y Aceves-Navarro, E. 2019. Aplicación del modelo simplificado para estimar dosis sustentables de fertilización fosforada en el cultivo de chile habanero (Capsicum chinense Jacq.). Investigación y Ciencia. 27(78):23-33.
Reyes, G. y Cortéz, D. 2017. Intensidad en el uso de fertilizantes en América Latina y el Caribe (2006-2012). Bioagro. 29(1): 45-52.
Reyes-Ramírez, A.; López-Arcos, M.; Ruiz-Sánchez, E.; Latournerie-Moreno, L.; Pérez-Gutiérrez, A.; Lozano-Contreras, M. G. y Zavala-León, M. J. 2014. Efectividad de inoculantes microbianos en el crecimiento y productividad de chile habanero (Capsicum chinense Jacq.). Agrociencia. 48(3):285-294.
Rodríguez-Hernández, M. G.; Gallegos-Robles, M. Á.; Rodríguez-Sifuentes, L.; Fortis-Hernández, M.; Luna-Ortega, J. G. y González-Salas, U. 2020. Cepas nativas de Bacillus spp. como una alternativa sostenible en el rendimiento de forraje de maíz. Terra Latinoam. 38(2):313-321. https://doi.org/10.28940/terra.v38i2.690.
Rojas-Badía, M. M.; Bello-González, M. A.; Ríos-Rocafull, Y.; Lugo-Moya, D. y Rodríguez, S. J. 2020. Utilización de cepas de Bacillus como promotores de crecimiento en hortalizas comerciales. Acta Agron. 69(1):54-60. https://doi.org/10.15446/acag.v69n1.79606.
Rojas-Solís, D.; Contreras-Pérez, M. y Santoyo, G. 2013. Mecanismos de estimulación del crecimiento vegetal en bacterias del género Bacillus. Biológicas. 15(2):36-41.
Sánchez, L.; Dıez, J. A.; Vallejo, A. and Cartagena, M. C., 2001. Denitrification losses from irrigated crops in central Spain. Soil Biol. Beachem. 33(9):1201-1209. https://doi.org/ 10.1016/S0038-0717(01)00024-4. DOI: https://doi.org/10.1016/S0038-0717(01)00024-4
Sosa-Pech, M.; Ruiz-Sánchez, E.; Tun-Suárez, J. M.; Pinzón-López, L. L. y Reyes-Ramírez, A. 2019. Germinación, crecimiento y producción de glucanasas en Capsicum chinense Jacq. Inoculadas con Bacillus spp. Ecosistemas y Recursos Agropecuarios. 6(16):137-143. https://doi.org/10.19136/era.a6n16.1801.
Torres, R. J. A.; Reyes, P. J. J. y González, R. J. C. 2016. Efecto de un bioestimulante natural sobre algunos parámetros de calidad en plántulas de tomate (Solanum lycopersicum, L.) bajo condiciones de salinidad. Biotecnia. 18(2):11-15. https://doi.org/10.18633/bt.v18i2.274. DOI: https://doi.org/10.18633/bt.v18i2.274
Vance, C. P. 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127(2):390-397. https://doi.org/10.1104/pp.010331. DOI: https://doi.org/10.1104/pp.010331
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.