Does amaranth have the agronomic potential to be a global phenomenon like quinoa

Authors

  • Eduardo Espitia Rangel Campo Experimental Valle de México-INIFAP. Carretera los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. CP. 56250
  • Luisa Fernanda Sesma Hernández Campo Experimental Valle de México-INIFAP. Carretera los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. CP. 56250
  • Miriam Gabriela Valverde Ramos Campo Experimental Valle de México-INIFAP. Carretera los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. CP. 56250
  • Lucila González Molina Campo Experimental Valle de México-INIFAP. Carretera los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. CP. 56250
  • Diana Escobedo López Campo Experimental Valle de México-INIFAP. Carretera los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México, México. CP. 56250
  • Miriam Jazmín Aguilar Delgado Facultad de Ciencias Agrotecnológicas-Universidad Autónoma de Chihuahua. Calle La Presa de la Amistad núm. 2015, Barrio La presa, Ciudad Cuauthémoc, Chihuahua, México. CP. 31510

DOI:

https://doi.org/10.29312/remexca.v12i8.2897

Keywords:

Amaranthus spp., Chenopodium quinoa, varieties, yield

Abstract

Amaranth and quinoa belong to the family Amaranthaceae characterized by having species that grow in adverse conditions, in addition to presenting high contents of proteins, unsaturated fatty acids and vitamins, as well as functional properties, which could be an excellent option to face the great problems that afflict the world. Due to these characteristics, quinoa has become a worldwide phenomenon and is already grown in more than 100 countries. The study was proposed in order to determine if amaranth has the agronomic potential to increase the cultivated area as happened with quinoa. An experiment was established with three varieties of quinoa and three varieties of amaranth in three environments of the Highs Valleys of Mexico, under a randomized complete block design with an arrangement of treatments in split plots. Agronomic variables, as well as yield, were evaluated. The results found showed that amaranth surpassed quinoa in inflorescence length, inflorescence width, stem diameter, hectoliter weight and yield, while quinoa presented higher values for seed diameter and weight of one thousand seeds. The Tlahuicole and L-145 amaranth genotypes observed the best performance, followed by the Suyana variety of quinoa. Amaranth has characteristics to be a worldwide phenomenon, as has happened with quinoa.

Downloads

Download data is not yet available.

References

Bazile, D. 2014. The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: Bazile, D.; Bertero, D. y Nieto, C. (Ed.). Estado del arte de la quinua en el mundo en 2013. FAO. Santiago de Chile y CIRAD, Montpellier, Francia. 42-55 pp. https://agritrop.cirad.fr/575493/1/document-575493.pdf.

Bazile, D. C.; Pulvento, A.; Verniau, M. S.; Al-Nusairi, J.; Breidy, L.; Hassan, M. I.; Mohammed, O.; Mambetov, M. O.; Sepahvand, N. A.; Shams, A.; Souici, D. and Padulosi, S. 2016. Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Frontiers in Plant Sci. 7(1):1-18. doi.org/10.3389/fpls.2016.00850. DOI: https://doi.org/10.3389/fpls.2016.00850

Bertero, D. 2013. Environmental control of development. In: Bazile, D.; Bertero, D. y Nieto, C. (Ed.). Estado del arte de la quinua en el mundo en 2013. FAO. Santiago de Chile y CIRAD. Montpellier, Francia. 120-130 pp.

Bhargava, A.; Shukala, S. and Ohri, D. 2007. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 101(1):104-116. doi.org/10.3390/plants10040714. DOI: https://doi.org/10.1016/j.fcr.2006.10.001

Chura, E.; Mujica, A.; Haussmann, B.; Smith, K.; Flores, S. and Flores, A. L. 2019. Agronomic characterization of quinoa (Chenopodium quinoa Willd.) progeny from close and distant self-fertilized s5 simple crosses. Ciencia e Investigación Agraria. 46(2):154-165. doi 10.7764/rcia.v46i2.2142.

Curti, R. N.; De la Vega, A. J.; Andrade, A. J.; Bramardi, S. J. and Bertero, H. D. 2014. Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crops Res. 166(1):46-57. doi.org/10.1016/j.fcr.2014.06.011. DOI: https://doi.org/10.1016/j.fcr.2014.06.011

De Santis, G.; Ronga, D.; Caradonia, F.; Ambrosio, T. D.; Troisi, J.; Rascio, A.; Fragosso, M.; Pechioni, N. and Rinaldi, M. 2018. Evaluation of two groups of quinoa (Chenopodium quinoa Willd.) accesions with different seed colours for adaptation to de Mediterranean environment. Crops and Pasture Sci. 69(6):1264-1275. https://doi.org/10.1071/CP18143.

Delgado A. I. P.; Palacios, C. J. H. y Betancourt, C. G. 2009. Evaluación de 16 genotipos de quinua dulce (Chenopodium quinoa Willd.) en el municipio de Iles, Nariño, Colombia. Agron. Colomb. 27(2):159-167.

Espitia, R. E. 1992. Amaranth germplasm development and agronomic studies in México. Food Reviews International. 8(1):71-86. doi.org/10.1080/87559129209540930. DOI: https://doi.org/10.1080/87559129209540930

Espitia, R. E.; Miranda, C. S. y Castillo, G. F.1992. Variabilidad genética e interrelaciones del rendimiento y sus componentes en alegría (Amaranthus spp.). Agrociencia. 3(4):83-98.

Espitia, R. E. 1994. Breeding of grain amaranth. In: Paredes-López, O. (Ed.) Amaranth: biology, chemistry and technology. CRC press, Boca Raton, USA. 23-38 pp.

INDECOPI. 2014. Compendio de normas técnicas peruanas: Quinua y Cañihua. NTP 205.062.2014. 1-25 pp.

Khalifa, W. and Thabet, M. 2018. Variation in downy mildew (Peronospora variabilis Gäum) resistance of some quinoa (Chenopodium quinoa Willd.) cultivars under Egyptian conditions. Middle East Journal of Agriculture Research. 7(2):671-682. https://www.researchgate.net/profile/Marian-Thabet/publication/328253874.

Mujica, S. A.; Berti, D. M. e Izquierdo, J. 1997. El cultivo del amaranto (Amaranthus spp.): producción mejoramiento genético y utilización. FAO. Roma, Italia. 145 p.

Murphy, K. M.; Matanguihan, J. B.; Fuentes, F. F.; Gómez‐Pando, L. R.; Jellen, E. N.; Maughan, P. J. and Jarvis, D. E. 2019. Quinoa breeding and genomics. Plant Breeding Reviews. 42(1):257-320. https://mosaic.messiah.edu/edbooks/64.

Ortiz-Torres, E.; Argumedo-Macías A.; García-Perea, H.; Meza-Varela, R.; Bernal-Muñoz, R. y Taboada-Gaytán, O. R. 2018. Rendimiento y volumen de expansión de grano de variedades mejoradas de amaranto para valles altos de Puebla. Rev. Fitotec. Mex. 41(3):291-300.

Präger, A.; Munz, S.; Nkebiwe, P. M.; Mast, B. and Graeff-Hooninger, S. 2018. Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in Southwestern Germany. Agronomy. 8(197):1-19. doi:10.3390/ agronomy8100197.

Ramírez, V. M. L.; Espitia, R. E.; Carballo, C. A.; Zepeda, B. R.; Vaquera, H. H. y Córdova, T. L. 2011. Fertilización y densidad de plantas en variedades de amaranto (Amaranthus hypochondriacus L.). Rev. Mex. Cienc. Agríc. 2(6):855-866.

Rastogi, A. and Shukla, S. 2013. Amaranth: a new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition. 53(1):109-125. doi.org/10.1080/10408398.2010. 517876. DOI: https://doi.org/10.1080/10408398.2010.517876

Rojas, W.; Pinto, M.; Alanoca, C.; Gómez, P. L.; Leónlobos, P.; Alercia, A.; Diulgheroff, S.; Padulosi, S. y Bazile, P. 2014. Conservación ex situ de los recursos genéticos de quinua. In: Bazile, D.; Bertero, D. y Nieto, C. (Ed.). Estado del arte de la quinua en el mundo en 2013. FAO. Santiago de Chile y CIRAD FAO. Santiago de Chile y CIRAD, Montpellier, Francia. 65-94 pp. https://agritrop.cirad.fr/574151/1/document-574151.pdf.

Thiam, E.; Alloui, A.; Benlhabib, O. 2021. Quinoa productivity and stability evaluation through varietal and environmental interaction. Plants. 10(714):1-14. doi.org/10.3390/plants 10040714.

Tiwari, S.; Pant, N. Ch.; Gupta, A.; Dwivedi, U.; Meena, J. K.; Pandey, C. S.; Dhoundiyal, R. and Bhatt, A. 2018. Genetic variability and genetic divergence for seed yield and its components characters in grain amaranth (Amaranhus hypochondriacus L.) germplasm. Inter. J. Chem Stud. 6(2):3292-3297.

Venskutonis, P. R. and Kraujalis, P. 2013. Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety. 12(2):381-412. doi: 10.1111/1541-4337.12021. DOI: https://doi.org/10.1111/1541-4337.12021

Zurita-Silva, A.; Fuentes, F.; Jacobsen, S. E. and Schwember, A. 2014. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Mol. Breed. 34(1):13-30. https://link.springer.com/article/10.1007/s11032-014-0023-5. DOI: https://doi.org/10.1007/s11032-014-0023-5

Published

2021-12-07

How to Cite

Espitia Rangel, Eduardo, Luisa Fernanda Sesma Hernández, Miriam Gabriela Valverde Ramos, Lucila González Molina, Diana Escobedo López, and Miriam Jazmín Aguilar Delgado. 2021. “Does Amaranth Have the Agronomic Potential to Be a Global Phenomenon Like Quinoa”. Revista Mexicana De Ciencias Agrícolas 12 (8). México, ME:1459-71. https://doi.org/10.29312/remexca.v12i8.2897.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>