Optimal associativity in rural areas of Ecuador using game theory

Authors

  • Gabriela Isabel Araujo Universidad Politécnica Salesiana. Cuenca, Azuay, Ecuador. CP. 010101. 2Universidad Popular Autónoma del Estado de Puebla. 17 sur núm. 901, Barrio de Santiago, Puebla, México. CP. 72410
  • Yésica Mayett-Moreno Universidad Popular Autónoma del Estado de Puebla. 17 sur núm. 901, Barrio de Santiago, Puebla, México. CP. 72410
  • Katia Angélica Figueroa-Rodríguez Colegio de Postgraduados-Campus Córdoba-Programa de Innovación Agroalimentaria Sustentable. Carretera Córdoba-Veracruz km 348.5, Congregación Manuel León, Amatlán de los Reyes, Veracruz, México. CP. 94953
  • Ezequiel Arvizu-Barrón Cátedras CONACYT-Universidad Autónoma Chapingo-Departamento de Sociología Rural. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, México. CP. 56230

DOI:

https://doi.org/10.29312/remexca.v12i7.2890

Keywords:

Losses, associativity, collective economy, agricultural planning, commercialization

Abstract

Agriculture in Latin America and specifically in Ecuador seeks to solve self-consumption and sales needs. In Ecuador, thousands of households are currently engaged in agriculture, which represents 70 of the country’s agricultural production and 60% of the food that makes up the basic basket. The objective of this research is to propose a model so that producers can work in agroecological associations using cooperative game theory, achieving to improve their productivity, coming to compete in a dynamism of costs, supply, demand, distance and time. A study with a mixed approach was conducted, since in the quantitative part, semi-structured surveys, descriptive analysis, as well as secondary information for the numerical mathematical model of cooperative game theory were used. In the qualitative part, being a little studied phenomenon, the sample size was 76 agro-producers, and the sampling was for convenience. For its part, the research design was non-experimental, cross-sectional since the data were collected in a single moment (2019). The survey consisted of 13 items, among which were their geographical location, socioeconomic characteristics of the producer and agricultural production, collection-commercialization and sale of the product, among others. The information from the survey was analyzed using descriptive statistics (frequencies, percentages and averages). Finally, using the results of the surveys and secondary databases, their location was georeferenced to simulate two comparative scenarios of working or not in association using the Matlab software. The findings suggest that it is important to work with a maximum of 20 producers per association, with the optimal number being less than 10 agro-producers, thus reducing productivity losses by 6.4% (14.4 kg) of production.

Downloads

Download data is not yet available.

References

Altier, M.; Nicholls, C. and Henao, A. Y. 2015. Agroecology and the design of climate change-resilient farming system. Agron. Sustainable Development. 35:869-890.

Altieri, M. A. 2002. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. (Ed.). 1-24 pp.

Altieri, M. and Toledo, V. M. 2011. The agroecological revolution of latin America: rescuing nature, securing food sovereignity and empowering peasants. J. Peasant Studies. 587-612 pp.

Barkin, D. y Fuentes-Carrasco, M. Z. 2012. La significación de una economía ecológica radical. Rev. Iberoam. Econ. Ecol. 19:1-14.

Brown, F. 1984. La evolución de la teoría de la oferta en condiciones de competencia perfecta. Inv. Econ. 43(167):255-258. http://www.jstor.org/stable/42779424.

Cabrera, J.; Morales, D. and Medina, R. 2019. Reducing power losses in smart grids with cooperative game theory. In: Ustun, T. S. Advanced communication and control methods for future Smartgrids London, United Kingdom. Intechopen. 49-65 pp.

Gobierno Autónomo Descentralizado Municipal del Cantón Cuenca. 2019. Alcaldía de Cuenca. http://www.cuenca.gov.ec/.

Granot, D. 2010. The reactive bargaining set for cooperative games. Inter. J. Game Theory. 39(1):163-170.

Hair, J. B. 2004. Investigación de mercados. McGraw-Hill. México, DF.

Heifer. 2016. Plan de negocios feria agroecológica de la escuela agroecológica de mujeres Saraguras. http://www.heiferecuador.org/wp-content/uploads/2018/03/5.-plan-de-negocios feria-eams.pdf.

Hernández-Sampieri, R. y Mendoza-Torres, C. P. 2018. Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta. Mc Graw Hill Education. México, DF.

Instituto Nacional de Estadísticas y Censos. 2018. Ecuador en cifras. https://www.ecuadorencifras. gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua-2018/.

Intriago, R. Y. 2018. Agroecología en el ecuador. Proceso histórico, logros y desafíos. Agroecología. 11(2):95-113.

Jiménez-Losada, A. 2017. Models for cooperative games with fuzzy relations among the agents. Studies in Fuzziness Soft Computing. 355:1-36.

MAG. 2014. Ministerio de agricultura y ganadería la agroecología está presente: mapeo de productores agroecológicos y del estado de la agroecología en la sierra y costa ecuatoriana. Quito: Heifer-Ecuador.

Peleg, B. and Sudhölter, P. 2007. Introduction to the theory of cooperative games. Berlín: Springer, Berlin, Heidelberg.

Rivera, C. 2019. Desarrollo de estrategias para el incremento de consumo de productos agroecológicos en la provincia del Azuay-Ecuador. Buenos Aires.

Saal, M. Y. 2015. Agroecología y agroecología y soberanía alimentaria, el caso de la feria agroecológica de Córdoba. https://issuu.com/magdalenasaal/docs/merged?fbclid= iwar0x urguxz-bzskbmujloi-ho81-yljtkbsj7ol21lnk1wjhebejeszr4do.

Santacoloma, P. 2016. Hacia una definición de cadenas cortas agroalimentarias. Taller de intercambio de experiencias: cadenas cortas agroalimentarias. FAO. Ciudad de México. 593dp.com/index.php/593-digital-publisher/login/signIn. 5-7 pp.

SIN. 2019. Sistema Nacional de Información. 2019. Planes de desarrollo y ordenamiento territorial. Retrieved from https://multimedia.planificacion.gob.ec/pdot/descargas.html.

Toledo, V. M.; Boege, E. and Barrera-Bassol, N. 2010. The biocultural heritage of México: an overview. Landscape. (Ed.). 6-10 pp.

Young, H. 2005. Monotonic solutions of cooperative game. Inter. J. Game Theory. 14:65-72.

Published

2021-11-04

How to Cite

Araujo, Gabriela Isabel, Yésica Mayett-Moreno, Katia Angélica Figueroa-Rodríguez, and Ezequiel Arvizu-Barrón. 2021. “Optimal Associativity in Rural Areas of Ecuador Using Game Theory”. Revista Mexicana De Ciencias Agrícolas 12 (7). México, ME:1287-95. https://doi.org/10.29312/remexca.v12i7.2890.

Issue

Section

Investigation notes

Most read articles by the same author(s)