In vivo translocation of Klebsiella variicola PB02 and Klebsiella quasipneumoniae HPA43 in fruits of Solanum lycopersicum cultivar DT-22

Authors

  • Getzemany Nava-Faustino Laboratory of Molecular Microbiology and Environmental Biotechnology-Faculty of Chemical Biological Sciences-Autonomous University of Guerrero. Av. Lázaro Cárdenas num. 88, The Centennial, Chilpancingo of the Bravo, Guerrero, Mexico. ZC. 39000. Tel. 747 4725503
  • Sergio Ramírez-Rojas Zacatepec Experimental Field-INIFAP. Zacatepec-Galeana Highway s/n, Zacatepec de Hidalgo Center, Morelos. ZC. 62780. Tel. 734 3433820
  • Francisco Palemón-Alberto Faculty of Agricultural and Environmental Sciences-Autonomous University of Guerrero. Iguala-Teloloapan s/n, Ignacio Manuel Altamirano, Iguala of the Independencia, Guerrero. ZC. 40040. Tel. 733 3334776
  • Diana Orbe Díaz Laboratory of Molecular Microbiology and Environmental Biotechnology-Faculty of Chemical Biological Sciences-Autonomous University of Guerrero. Av. Lázaro Cárdenas num. 88, The Centennial, Chilpancingo of the Bravo, Guerrero, Mexico. ZC. 39000. Tel. 747 4725503
  • Ángela Victoria Forero-Forero Faculty of Sciences-National Autonomous University of Mexico. Av. Universidad 3000, External circuit s/n, Coyoacán Delegation, Mexico City, Mexico. ZC. 04510
  • Jeiry Toribio-Jiménez Laboratory of Molecular Microbiology and Environmental Biotechnology-Faculty of Chemical Biological Sciences-Autonomous University of Guerrero. Av. Lázaro Cárdenas num. 88, The Centennial, Chilpancingo of the Bravo, Guerrero, Mexico. ZC. 39000. Tel. 747 4725503

DOI:

https://doi.org/10.29312/remexca.v13i5.2880

Keywords:

biofertilizer, clonal profile, safety, translocation

Abstract

Currently, biofertilizers or organic compounds have been implemented in agriculture as fertilizer to increase the yield of crops of commercial interest and restore soil fertility. The use of plant growth-promoting bacteria has been one of the best alternatives that increase production yield and do not cause damage to the environment. Their use is not fully accepted by producers because of the risk they may have to the health of the consumer. Therefore, this work evaluated the effectiveness of two strains K. variicola PB02, K. quasipneumoniae HPA43 in consortium with Trichoderma in the production yield of Solanum lycopersicum cultivar DT22, a variety highly marketed in the national market, the significant increase (p= 0.003) was observed with respect to other commercial biofertilizers and the control group. The microbiological safety of the fruits, the translocation of these bacteria by the vascular system of the plant until reaching the fruit, was evaluated through the clonal profile of each of the isolates, without finding similarities between the inoculated strains and the strains isolated from endophytic tissues of the fruit, however it is necessary to carry out more genetically specific studies that verify that these bacteria have not actually developed mechanisms that allow them to translocate to aerial anatomical sites of plants and fruit, thus guaranteeing quality fruits without representing a risk to the health of the consumer and a high yield in the production of agricultural crops of commercial interest.

Downloads

Download data is not yet available.

References

Arena, F.; Henrici De Angelis, L.; Pieralli, F.; Di Pilato, V.; Giani, T.; Torricelli, F. and Rossolini, G. M. 2015. Draft genome sequence of the first Hypermucoviscous Klebsiella quasipneumoniae subsp. quasipneumoniae Isolate from a Bloodstream Infection. Genome Announc. 3(5):e00952-15. http://doi.org/10.1128/genomeA.00952-15. DOI: https://doi.org/10.1128/genomeA.00952-15

Barak, D. J. and Schroeder, K. B. 2012. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Annual Review Phytopathol. 50(1):241-266. DOI:10.1146/annurev-phyto-081211-172936. DOI: https://doi.org/10.1146/annurev-phyto-081211-172936

Bautista, L. X. C. y Gallardo, I. R. 2008. Estandarización de métodos de detección para promotores de crecimiento vegetal (ácido indol acético y giberelinas) en cultivos microbianos. Tesis de grado. Pontificia Universidad Javeriana. 159 p.

Beltrán, M. E. 2014. Phosphate solubilization as a microbial strategy for promoting plant growth, Corpoica Cienc. Tecnol. Agropecuaria. 15(1):101-113.

Benítez, T.; Rincón, A. M.; Limón, M. C. y Codón, A. C. 2004. Biocontrol mechanisms of Trichoderma strains. International microbiology: the official J. Spanish Soc. Microbiol. 7(4):249-260.

Bernabé, S. L. 2016. Identificación molecular de bacterias cultivadas y no cultivadas asociadas a la rizósfera de Opuntia ficus-indica (L.) mil. (cactácea) en ecosistemas áridos. Tesis de maestría. Universidad Nacional de Tumbes. 31-33 pp. http://repositorio.untumbes.edu.pe/ handle/UNITUMBES/186.

Calzavara, A. K.; Godoy, P. P. H.; Cavanha, G. L.; Martínez, O. L. A.; Milanic, K.; Caixeta, O. H.; Bianchini, E.; Pimenta, J. A.; Neves, O. M. C.; Dias, P. J. and Stolf, M. R. 2018. Associative bacteria influence maize (Zea mays L.) growth, physiology, and root anatomy under different nitrogen levels. Plant Biol. 20(5):870-878. doi:10.1111/plb.12841. DOI: https://doi.org/10.1111/plb.12841

Carcaño, M. M. G.; Ferrera, C. R.; Pérez, M. J.; Molina, J. D. and Bashan, Y. 2006. Nitrogenase activity, production of phytohormones, siderophores and antibiosis in strains of Azospirillum and Klebsiella isolated from Maize and Teosintle. Terra Latinoam. 24(4):493-502.

do Nascimento, M. O.; de Almeida, S. R.; dos Santos, G. R.; de Oliveira, C. A. and de Sousa, D. J. 2017. Antagonism of Trichoderma isolates against Leucoagaricus gongylophorus (Singer) Möller. J. Basic Microbiol. 57(8):699-704. doi: 10.1002/jobm.201600755. DOI: https://doi.org/10.1002/jobm.201600755

Fouts, D. E.; Tyler, H. L.; Deboy, R. T.; Daugherty, S.; Ren, Q.; Jonathan, H. and Methe, B. A. 2008. Complete genome sequence of the N2 -fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet. 4(7):e1000141. 1-8 pp. doi: 10.1371/journal.pgen.1000141. DOI: https://doi.org/10.1371/journal.pgen.1000141

Garza, R. U.; Silva, S. J.; Martínez, R. E.; Tinoco, P.; Pina, G. M. and Barrios, H. 2015. Development of a multiplex-PCR probe system for the proper identification of Klebsiella variicola. BMC Microbiol. 15(64):1-24. doi: 10.1186/s12866-015-0396-6. DOI: https://doi.org/10.1186/s12866-015-0396-6

Gutiérrez, I. G. y Nava, C. G. 2017. Evaluación de Klebsiella variicola, Klebsiella quasipneumoniae y Klebsiella pneumoniae como reguladoras de crecimiento radicular de Solanum lycopersicum. Tesis de Licenciatura. Facultad de Ciencias Químicas de la Universidad Autónoma de Guerrero. 22-45 pp.

Heaton, J. C. and Jones, K. 2008. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a Review. J. Appl. Microbiol. 104(3):613-26. doi:10.1111/j.1365-2672.2007.03587. DOI: https://doi.org/10.1111/j.1365-2672.2007.03587.x

Hirpara, D. G.; Gajera, H. P.; Hirapara, J. G. and Golakiya, B. A. 2017. Inhibition coefficient and molecular diversity of multi stress tolerant Trichoderma as potential biocontrol agent against Sclerotium rolfsii Sacc. Infection, genetics, and evolution. J. Mol. Epidemiol. Evol. Gen. Infectious Dis. 55(29):75-92. https://doi.org/10.1016/j.meegid.2017.08.029. DOI: https://doi.org/10.1016/j.meegid.2017.08.029

Lara-Celia, C.; Oviedo, L. y Alemán, A. 2011. Aislados nativos con potencial en la producción de Ácido Indol Acético para mejorar la agricultura. Biotecnología en el Sector Agropecuario y Agroindustrial. 9(1):17-23.

Martínez-Romero, E.; Rodríguez-Medina, N.; Beltrán-Rojel, M.; Toribio-Jiménez, J. and Garza-Ramos, U. 2018. Klebsiella variicola and Klebsiella quasipneumoniae with capacity to adapt to clinical and plant settings. Salud Pública de México. 60(1):29-40. https://doi.org/10.21149/8156. DOI: https://doi.org/10.21149/8156

Muñoz-Rojas, J.; Molina-Romero, D.; Bustillos-Cristales, M. R.; Rodríguez-Andrade, O.; Morales-García, E.; Santiago-Saenz, Y., y Castañeda-Lucio, M. 2015. Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. 17(2):24-34.

Nautiyal-Shekhar, C. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. Microbiology Letters. 170:265-270. DOI: https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

Ottesen, A. R.; González-Peña, A.; White, J. R.; Pettengill, J. B.; Li, C.; Allard, S.; Rideout, S.; Allard, M.; Hill, T.; Evans, P.; Strain, E.; Musser, S.; Knight, R. and Brown, E. 2013. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiology. 13(114):1-11. https://doi.org/10.1186/1471-2180-13-114. DOI: https://doi.org/10.1186/1471-2180-13-114

Puerta-García, E. A. and Mateos-Rodríguez, F. 2010. Enterobacterias. Medicine. 10(1):3426-3431. Rennie, R. J. 1986. Advantages and disadvantages of nitrogen-15 isotope dilution to quantify dinitrogen fixation in field-grown legumes. A critique. In: Hauck R. D. and Weaver, R. W. Field measurement of dinitrogen fixation and denitrification. Soil Science. Society of America, Madison, Wisconsin, USA. Special Publication 8. (Ed.). 43-58 pp. Scharf, B. E.; Hynes, M. F. and Alexandre, G. M. 2016. Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant Mol. Biol. 90(6):549-559. https://doi.org/ 10.1007/s11103-016-0432-4.

Taiz, L. and Zeiger, E. 2013. Fisiologia Vegetal. 5th Edition. Artmed, Porto Alegre. 918 p.

Tereja-Hernández, R. B. 2013. Aislamiento de Bacillus solubilizadores de fosfatos. Agron. Mesoamer. 24(2):357-364. DOI: https://doi.org/10.15517/am.v24i2.12535

Tenover, F. C.; Arbeit, R. D.; Goering, R. V.; Mickelsen, P. A.; Murray, B. E.; Persing, D. H. and Swaminathan, B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clinical Microbiol. 33(9):2233-2239. https://doi.org/10.1128/JCM.33.9.2233-2239.1995. Versalovic, J.; Koeuth, T. and Lupski, J. R. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic. Acids. Res. 19(24):6823-6831.

Vega-Celedón, P.; Canchignia-Martínez, H.; González, M. y Seeger, M. 2016. Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias. Cultivos Tropicales. 37(1):33-39. Villa, P. M.; Frías, A. y González, G. 2017. Evaluación de cepas de Pseudomonas sp. para el control de hongos fitopatógenos que afectan cultivos de interés económico. ICIDCA. Sobre los derivados de la caña de azúcar. XXXIX(3): 40-44.

Vinale, F.; Sivasithamparam, K.; Ghisalberti, E. L.; Marra, R.; Woo, S. L. and Lorito, M. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40(1):1-10. https://doi.org/10.1016/j.soilbio.2007.07.002. DOI: https://doi.org/10.1016/j.soilbio.2007.07.002

Wei, C.; Lin, L.; Luo, L.; Xing, Y.; Hu, C.; Yang, L.; Li, Y. and An, Q. 2013. Endophytic nitrogen fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biology and Fertility of Soils. 50(1):657-666. Doi:10.1007/s00374-013-0878-3. DOI: https://doi.org/10.1007/s00374-013-0878-3

Published

2022-08-02

How to Cite

Nava-Faustino, Getzemany, Sergio Ramírez-Rojas, Francisco Palemón-Alberto, Diana Orbe Díaz, Ángela Victoria Forero-Forero, and Jeiry Toribio-Jiménez. 2022. “In Vivo Translocation of Klebsiella Variicola PB02 and Klebsiella Quasipneumoniae HPA43 in Fruits of Solanum Lycopersicum Cultivar DT-22”. Revista Mexicana De Ciencias Agrícolas 13 (5). México, ME:799-811. https://doi.org/10.29312/remexca.v13i5.2880.

Issue

Section

Articles

Most read articles by the same author(s)