Nutritional value in grains of triticale as an alternative in the food

Authors

  • Gilberto Rodríguez-Perez Tecnológico Nacional de México-Campus Valle del Yaqui. Av. Tecnológico, Block 611, Valle del Yaqui Bácum, Ciudad Obregón, Sonora
  • José Francisco Cervantes-Ortiz Tecnológico Nacional de México-Campus Roque. Carretera Celaya-Juventino Rosas km 8, Celaya, Guanajuato
  • Alfredo Josué Gámez-Vázquez Campo Experimental Bajío-INIFAP. Carretera Celaya-San Miguel de Allende km 6.5, Celaya, Guanajuato
  • Felipe de Jesús Reynaga-Franco Tecnológico Nacional de México-Campus Valle del Yaqui. Av. Tecnológico, Block 611, Valle del Yaqui Bácum, Ciudad Obregón, Sonora
  • Jony Ramiro Torres-Velázquez Tecnológico Nacional de México-Campus Valle del Yaqui. Av. Tecnológico, Block 611, Valle del Yaqui Bácum, Ciudad Obregón, Sonora
  • Miguel Ángel Ávila-Perches Campo Experimental Bajío-INIFAP. Carretera Celaya-San Miguel de Allende km 6.5, Celaya, Guanajuato

DOI:

https://doi.org/10.29312/remexca.v14i3.2870

Keywords:

X. Triticosecale Wittmack, industrial quality, physicochemical properties

Abstract

The objective of this research was to identify lines of triticale (X. Triticosecale Wittmack) of value in the food industry, based on their physical and chemical properties. Twenty elite lines of spring triticale from the CIMMYT research program were established under a completely randomized experimental design with six repetitions during 2018 in Celaya, Guanajuato, Mexico, where the following variables were evaluated: WTG, HW, moisture, ashes, fat, fiber, protein, and carbohydrates. The results showed differences (p≤ 0.05) between lines, the highest values of WTG, HW and the highest percentage in fat, fiber, proteins and carbohydrates were found in lines L-18, L-17 and L-14, in addition to L-20, L-10 and L-19. The AMMI model detected significant differences (p≤ 0.05) for the lines and their interactions with physicochemical variables; the biplot graph showed that lines L-18, L-7, L-10, L-17 and L-20 expressed greater association with WTG, HW, proteins, fats, fiber and carbohydrates, which allows them to be considered in the use of the food industry for obtaining higher averages.

Downloads

Download data is not yet available.

References

Aisawi, K. M.; Reynols, R.; Singh, M. and Foulkes, X. 2015. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 55(4):1749-1764. AACC. 1995. American Association of Cereal Chemists. Official methods of analysis. 10th. Ed. Washington. 1-53 p. DOI: https://doi.org/10.2135/cropsci2014.09.0601

Ammar, K.; Mergoum, M. and Gómez, M. H. 2004. The history and evolution of triticale. In: the triticale improvement and production. Food and Agriculture Organization of the United Nations. FAO. Rome, Italy. 179(1):1-9.

AOAC. 2000. Association of Official Analytical Chemists. Official methods of analysis. 15th. Ed. Washington. 1-5 pp.

AOAC. 2012. Association of Official Analytical Ahemists. Official methods of analysis. 15th. Ed. Washington. Castaño, M.; Ribotta, P.; Ferreira, V.; Grassi, E.; Ferreira, A.; di Santo, H.; Castillo, E. y Paccapelo, H. 2015. Aptitud de las harinas integrales de triticales (x Triticosecale Wittmack) para la elaboración de galletitas. SEMIARIDA, UN la Pampa. Rev. Facultad de Agronomía. 25(1):25-39. Crossa, J. 1990. Statistical analysis of multilocation trials. Adv. Agron. 44(1):55-85.

Fan, Z. 2018. Triticale: nutritional composition and food uses. Food Chemistry, February. 14(241):468-479. Ferreira, V.; Grassi, E.; Ferreira, A.; Santo, H.; Castillo, E. y Paccapelo, H. 2015. Triticales y tricepiros: interacción genotipo ambiente y estabilidad del rendimiento de grano. Chilean J. Agric. Anim. Sci. 31(2):93-104

García, E. 1973. Modificaciones al sistema de clasificación climática de Köppen. 6-246 pp. Giunta, F.; Motzo, R.; Virdis, A. and Cabigliera, A. 2017. The effects of forage removal on biomass and grain yield of intermediate and spring triticales. Field Crops Res. 200(2) 47-57. Gulmezoglu, N.; Alpu, O. and Ozer, E. 2010. Comparative performance of triticale and wheat grains by using path analysis. BJAS. 16(2):443-453. Jing, J. W.; Guang, L.; Yan, B. H.; Qiao, H. Z.; Guo, S. S.; Yi, H.; Lin, L. and Song, Q. S. 2016. Role of N-terminal domain of HMW 1Dx5 in the functional and structural properties of wheat dough. Food Chem. 213(3):682-690. Jonnala, R. S.; Macritchie, F.; Herald, T. J.; Lafiandra, D.; Margiotta, B. and Tilley, M. 2010. Protein and quality characterization of triticale translocation lines in bread making. Cereal Chem. 87(6):546-552. Moiraghi, M.; Vanzetti, L.; Bainotti, C.; Helguera, M. and Leon, P. X. 2011. Relationship between soft wheat flour physicochemical composition and cookie-making performance. Cereal Chem. 88(2):130-136. Negash, A. W.; Mwambi, H.; Zewotir, T. and Taye, G. 2013. Additive main effects and multiplicative interactions model (AMMI) and genotype main effect and genotype by environment interaction (GGE) biplot analysis of multi-environmental wheat variety trials. Afr. J. Agric. Res. 8(12):1033-1040.

Núñez, C. A. C. y Escobedo, L. D. 2011. Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Rev. Agron. Mesoam. 22(2):415-427. Oliete, B.; Pérez, G.; Gómez, M.; Ribotta, P.; Moiraghi, M. and León, A. 2010. Use of wheat, triticale and rye flours in layer cake production. J. Food Sci. Tech. 45(4):697-706. Pattison, L. A.; Appelbee, M. and Trethoman, R. M. 2014. Characteristics of modern triticale quality: glutenin and scalin subunit composition an mixiographpropierties. J. Agric. Food. Chem. 62(21):4924-4931. Peña, B. R. J.; Hernández, N. E.; Pérez, P. H.; Villaseñor, H. E. M.; Gómez, M. V. y Mendoza, A. L. 2007. Calidad de la cosecha de trigo en México; ciclo otoño-invierno 2006-2007. Publicación Especial del CONASIST-CONATRIGO. 10-24 pp.

Pomortsev, A.V.; Dorofeev, N. V.; Zorina, Y. S.; Katysheva, N. B. and Sokolova, L. G. 2019. The effect of planting date on winter rye and triticale overwinter survival and yield in eastern siberia. IOP Conf. Ser: earth environ. AGRITECH Sci. 315(3):1-3. Pruska, K. A.; Makowska, A. and Kedzior, Z. 2017. Rheological characterization of gluten from triticale (x Triticosecale Wittmack). J. Sci. Food Agric. 97(14):5043-5052. Riasat, M.; Kiaani, S.; Saed, M. A. and Mohamed, P. 2019. Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. J. Plant Nutr. 42(2):111-126. Zhu, F. 2018. Triticale: Nutritional composition and food uses. Food Chemistry. 241(2):468-479.

Published

2023-05-04

How to Cite

Rodríguez-Perez, Gilberto, José Francisco Cervantes-Ortiz, Alfredo Josué Gámez-Vázquez, Felipe de Jesús Reynaga-Franco, Jony Ramiro Torres-Velázquez, and Miguel Ángel Ávila-Perches. 2023. “Nutritional Value in Grains of Triticale As an Alternative in the Food”. Revista Mexicana De Ciencias Agrícolas 14 (3). México, ME:351-62. https://doi.org/10.29312/remexca.v14i3.2870.

Issue

Section

Articles

Most read articles by the same author(s)