Control of apple snail with copper chelate and ozonated water in rice cultivation at field level
DOI:
https://doi.org/10.29312/remexca.v13i2.2792Keywords:
apple snail, copper, ozonated waterAbstract
The pest that has caused the most problems in rice (Oriza sativa L.) in recent years is the apple snail, Pomacea canaliculata (Lamarck); this pest is considered among the 100 worst invasive species in the world. The present work is an experimental trial at the field level where different doses of copper chelate and ozonated water were applied to control the apple snail in rice cultivation; for which a randomized complete block design (RCBD) was used, with five treatments, including the control and four repetitions. The experimental site was located on a farm in the Salitre canton, in the Guayas province, Ecuador, with tropical climate. The mortality rate of the snails against the proposed treatments was evaluated. Treatment T4, which corresponded to the dose of 2 L ha-1 of copper chelate mixed with ozonated water with a concentration of 2 ppm, was the treatment were the best apple snail control was observed, resulting in 94% mortality.
Downloads
References
Attademo, A.; Lajmanovich, R. and Peltzer, P. 2016. Acute toxicity of metaldehyde in the invasive rice snail Pomacea canaliculata and sublethal effects on tadpoles of a non-target species (Rhinella arenarum). Water Air Soil Pollut. 227:400-409.
Capinera, J. L. and Dickens, K. 2016. Some effects of copper-based fungicides on plant-feeding terrestrial mollusks: a role for repellents in mollusk management. Crop Protec. 83:76-82.
Carvalho, F.; Gosmann, G. and Turcato, G. 2019. Extracts of the unripe fruit of Ilex paraguariensis as a potential chemical control against the golden apple snail (Pomacea canaliculata) (Gastropoda, ampullariidae). Natural Product Res. 33(16):2379-2382.
Castillo, M.; Cañon, H.; Schlotterbecka, T.; López, M.; Tomase, A. and San-Martín, R. 2018. Safety and efficacy of quinoa (Chenopodium quinoa) saponins derived molluscicide to control of Pomacea maculata in rice fields in the ebro delta, Spain. Crop Protec. 111:42-49.
Chakraborti, R. K.; Madon, S. and Kaur, J. 2016. Costs for controlling dreissenid mussels affecting drinking water infrastructure: case studies. J. Am. Water Works Association. 108:E442-E453.
Clemens, D. F.; Whitehurst, B. M. and Whitehurst, G. B. 1990. Chelates in agriculture. Fertilizer research. 25(2):127-131.
Correoso, M.; Coello, M. and Espinosa, E. 2017. Pomacea canaliculata in Ecuador a recent pest with multiple implications. https://www.cabi.org/isc/FullTextPDF/2017/ 20173354473.pdf.
De Oliveira-Filho, E.; Lopes, R. and Paumgartten, F. 2004. Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere. 56(4):369-374.
Ding, W.; Huang, R.; Zhou, Z.; Hea, H. and Li, Y. 2017. Ambrosia artemisiifolia as a potential resource for management of golden apple snails (Pomacea canaliculata Lamarck). Pest Manag. Sci. 74:944-949.
Dirección General de Alimentación y Fomento Agroalimentario. 2014. El caracol manzana: Pomacea maculata y Pomacea canaliculata. Informaciones técnicas. https://www.aragon.es/documents/20127/674325/Caracol-manzana.pdf/adf194d6-1b15-3d29-53a5-62f68f7b4c12.
Dugan, M. 2015. Commodity of the quarter rice. J. Agric. Food Infor. 16(1):3-10.
Gilioli, G.; Pasquali, S. and Martín, P. 2017. A temperature-dependent physiologically based model for the invasive apple snail Pomacea canaliculata. Intr. J. Biometeorol. 61:1899-1911.
Global Invasive Species Database. 2013. 100 of the world’s worst invasive alien species. http://www.iucngisd.org/gisd/100-worst.php.
Guzman, P. 2019. Efecto del quelato de cobre más agua ozonizada en el control de caracol manzana (Pomacea canaliculata) en el cultivo arroz de la zona de Salitre. Tesis de Grado. Carrera de Ingenieria Agropecuaria, Universidad Católica de Santiago de Guayaquil. http://repositorio.ucsg.edu.ec/bitstream/3317/10210/1/t-ucsg-pre-tec-agro-135.pdf.
Hamid, S.; Halim, N. and Sarbon, N. 2015. Optimization of enzymatic hydrolysis conditions of golden apple snail (Pomacea canaliculata) protein by alcalase. Inter. Food Res. J. 22(4):1615-1623.
Hammond, D. and Ferris, G. 2019. Low doses of earthtec qzionic copper used in effort to eradicate quagga mussels from an entire Pennsylvania Lake. Manag. Biol. Invasions. 10(3):500-516.
Huang, D.; Huang, Y.; Tang, Y.; Zhang, Q.; Li, X.; Gao, S.; Hua, W. and Zhang, R. 2019. Survey of Angiostrongylus cantonensis infection status in host animals and populations in shenzhen. Vector-Borne Zoonotic Dis. 19(10):717-723.
Ibrahim, R.; Haiyee, Z. A. and Latip, S. N. H. M. 2017. The antifeedant activity of essential oil from Cymbopogon citratus and piper bitle for controlling golden apple snail, Pomacea canaliculata. J. Fundamental Appl. Sci. 9(6S):39-47
INIAP. 1999. Instituto Nacional de Investigaciones Agropecuarias. Estación Experimental Boliche. ‘Filipino’: nueva variedad de arroz. Guayaquil, Ecuador. INIAP 14. Plegable Promocional Núm. 2.
Landa, A.; Fernández, I.; Monje, R. and Orta, M. T. 2018. Tomato crop improvement using ozone disinfection of irrigation water. Ozone: Sci. Eng. 41(5):398-403.
Lake, I. and Hofmann, R. 2019. Effectiveness of a copper based molluscicide for controlling dreissena adults. Environmental science: water research and technology. 5:693-703.
Lee, S.; Park, C.; Lee, C. R.; Ko, B.; Park, K.; Hong, S. and Kim, J. 2019. The environmental adaptability of Pomacea canaliculata used for weeding control in wet rice paddies and crop damage caused by overwintered golden apple snails. Korean J. Environ. Agric. 38(1):23-33.
McCartney, M. 2016. Summary report: field evaluation of toxicity of low-dose molluscicide treatments for zebra mussel veliger larvae-potential applications in lake management. Prepared for minnehaha creek watershed district. Minnesota. 1-52 pp.
Murali, S.; Jawahar, D. and Chitdeshwari, T. 2018. Effects of Fe chelates on growth and yield attributes of blackgram on a black calcareous soil. Madras Agric. J. 105(1-3):20-23.
Naghma, K.; Zehra, K.; Nasir, H. N.; Imtiaz, B. and Sikender, H. 2017. Effect of copper sulfate on eradication of snail’s specie, Oncomelania quadrasi, in aquatic habitats having labeo rohita as a selected fish. Iranian J. Fisheries Sci. 16(2):800-814.
Olivier, H.; Jenkins, J. and Berhow, M. 2016. A pilot study testing a natural and a synthetic molluscicide for controlling invasive apple snails (Pomacea maculata). Bull Environ. Contam. Toxicol. 96:289-294.
Osorio, V.; Félix, I.; Ramos, N. y González, R. 2012. Ensayo de eficacia para el control de caracol (Pomacea caniculata) en el cultivo de arroz bajo trasplante con el molusquicida cobre quelatado, en la zona de palestina, provincia del guayas. https://vdocuments.mx/cobre-quelatado-como-medio-de-control-del-caracol-manzana-en-cultivos-de-arroz.html.
Pandiselvam, R.; Subhashini, S.; Banuu, E.; Anjineyulu, S.; Ramesh, V. and Shahir, S. 2019. Ozone based food preservation: a promising green technology for enhanced food safety. Ozone Sci. Eng. 41(1):17-34.
Quiroz, J. 2012. Recomendaciones para minimizar el daño del caracol Pomacea canaliculata en la producción de arroz. Estación Experimental Litoral Del Sur. INIAP. EC. Plegable núm. 388.
Rhys, I. 2018. Dreissena fouling control for water treatment plants and the investigation of a new copper-based molluscicide. Tesis de Maestría. Department of Civil y Mineral Engineering, University of Toronto.
Singh. 2015. Global warming impact. In climate change effect on crop productivity. Crc press, Florida, USA.
Wang, K.; Liu, Y.; Song, Z.; Khan, Z. H. and Qiu, W. 2019. Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils. Ecotoxicol. Environ. Safety. 182 p.
Yang, C.; Zhang, M.; Lei, B.; Gong, G.; Yue, G.; Chang, X. and Chen, H. 2016. Active saponins from root of Pueraria eduncularis (Grah. Ex Benth.) benth and their molluscicidal effects on Pomacea canaliculata. Pest Manag. Sci. 73(6):1143-1147.
Yruela I. 2009. Copper in plants: acquisition, transport and interactions. Funct. Plant Biol. 36:409-430.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.