Creole maize from South-West of São Paulo, Brazil: diversity and seed quality

Authors

  • Laís Stefany de Carvalho Falca Lima Departamento de Tecnología Agroindustrial y Economía Social Rural (DTAiSeR-Ar)-Universidad Federal de São Carlos (UFSCar). Carretera Anhanguera km 174, Araras, São Paulo, Brasil. CEP. 13604-900
  • Cristina Fachini Instituto Agronómico de la Secretaría de Agricultura del Estado de São Paulo. Carretera Sebastião Ferraz de Camargo Penteado km 232, Caitê, Capão Bonito, São Paulo, Brasil. CP. 62. CEP. 18300-970.
  • Victor Roberto da Silva Departamento de Tecnología Agroindustrial y Economía Social Rural (DTAiSeR-Ar)-Universidad Federal de São Carlos (UFSCar). Carretera Anhanguera km 174, Araras, São Paulo, Brasil. CEP. 13604-900
  • Janice Rodrigues Placeres Borges Departamento de Tecnología Agroindustrial y Economía Social Rural (DTAiSeR-Ar)-Universidad Federal de São Carlos (UFSCar). Carretera Anhanguera km 174, Araras, São Paulo, Brasil. CEP. 13604-900
  • Victor Augusto Forti Departamento de Tecnología Agroindustrial y Economía Social Rural (DTAiSeR-Ar)-Universidad Federal de São Carlos (UFSCar). Carretera Anhanguera km 174, Araras, São Paulo, Brasil. CEP. 13604-900

DOI:

https://doi.org/10.29312/remexca.v13i1.2790

Keywords:

Zea mays, physical analysis, physiological potential, creole variety

Abstract

The maintenance of creole seeds promotes preservation of agrobiodiversity and family autonomy. For this reason, seeds quality is essential in the context of creole seeds because directly impacts the improvement of the production field and, consequently, its continuous existence. The study evaluated the diversity and the seed quality of creole maize seeds in two harvests in the South-West of São Paulo, Brazil, an important maize production site in Brazil. Seeds from both harvests (2019 and 2020) were evaluated regarding the physical (physical aspects, one test seed mass, test of infestation), physiological (water content, germination test, seedling emergence in soil, emergence speed index and cold test) and health potential (blotter test). Among 20 lots collected, the seeds were classified into five varieties according to family famers perception. It was observed a variation in terms of physical, physiological and health quality between the seed lots. The lots harvested in 2020 had the highest values of size, 1000 seed mass, germination and vigor. The blotter test identified for both harvests, mainly in 2019, high incidence of Aspergillus sp. and Penicillium sp., considered as storage fungi. Therefore, the variation in seed quality between the harvest refers mainly to the characteristics of the storage process performed. More studies on better strategies for creole maize seed storage are necessary to guarantee seed quality, since low seed quality is a risk for losing these materials.

Downloads

Download data is not yet available.

References

Antonello, L. M.; Muniz, M. F. B.; Brand, S. C.; Rodrigues, J.; Menezes, N. L. and Kulczynski, S. M. 2014. Significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize. Scientific Reports. 4(1):4815. Doi: 10.1038/srep04815.

Brasil. 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para Análise de Sementes. Brasília. 395 p. Catão, H. C. R. M.; Magalhães, H. M.; Sales, N. L. P.; Brandão-Junior, D. S. and Rocha, F. S. 2013. Incidência e viabilidade de sementes crioulas de milho naturalmente infestadas com fungos em pré e pós-armazenamento. Ciência Rural. 43(5):764-770. Doi: https://doi.org/10.1590/S0103-84782013000500002.

Da Silva, G. H.; Toledo, M. Z.; Teixeira, R. N.; Rossi, R. F. and Nakagawa, J. 2019. Influence of the storage environment on the physiological quality of millet seeds (Pennisetum glaucum (L.) R. Br.). J. Seed Sci. 41(3):286-292. Doi: https://doi.org/10.1590/2317-1545v41n320 8200. De Almeida Silva, T. T.; Von Pinho, E. V. R.; Cardoso, D. L.; Ferreira, C. A.; Alvim, P. O. and Costa, A. A. F. 2008. Physiological quality of corn seeds in the presence of biostimulants. Ciência e Agrotecnologia. 32(3):840-846. De Medeiros, A. D.; Zavala-León, M. J.; Silva, L. J.; Oliveira, A. M. S. and Dias, D. C. F. S. 2019. Relationship between internal morphology and physiological quality of pepper seeds during fruit maturation and storage. Agron. J. 112(1):25-35.

Fachini, C.; Mariuzzo, P. and Cerdan, L. M. I. 2019. O roteiro do milho: a construção do turismo gastronômico no Vale do Paranapanema-SP. Em: Lavandoski, J.; Brambilla, A. y Vanzella, E. (Org.). Alimentação e turismo: oferta e segmentos turísticos. 1a (Ed.). João Pessoa. Editora do CCTA. 1(1):251-278.

Ferreira, V. F.; Oliveira, J. A.; Ferreira, T. F.; Reis, L. V.; Andrade, V. and Neto, J. M. 2013. Quality of maize seeds harvested and husked at high moisture levels. J. Seed Sci. 35(3):276-277. Doi: https://doi.org/10.1590/S2317-15372013000300001. Finch-Savage, W. E. and Bassel, G. W. 2016. Seed vigor and crop establishment: extending performance beyond adaptation. J. Exp. Bot. 67(3):567-591. Doi: https://doi.org/10.1093/ jxb/erv490. Goswami, J.; Pandey, R. K.; Tewari, J. P. and Goswami, B. K. 2008. Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J. Environ. Sci. Health Part B. 43(3):237-240. Doi: https://doi.org/10.1080/03601230701771164. Gu, R.; Li, L.; Liang, X.; Wang, Y.; Fan, T.; Wang, Y. and Wang, J. 2017. The ideal harvest time for seeds of hybrid maize (Zea mays L.) XY335 and ZD958 produced in multiple environments. Scientific reports. 7(1):1-9. Doi: https://doi.org/10.1038/s41598-017-16071-4. Han, Z.; Ku, L.; Zang, Z.; Zang, J.; Gou, S.; Liu, H.; Zhao, R.; Ren, Z.; Zhang, L.; Su, H.; Dong, L. and Chen, Y. 2014. QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions. PloS One. 9(3):1-13. Doi: https://doi.org/ 10.1371/journal.pone.0092535. Khosravi, A. R.; Mansouri, M.; Bahonar, A. S. and Shokri, H. 2007.Mycoflora of maize harvested from Iran and imported maize. Pakistan J. Biol. Sci. PJBS. 10(24):4432-4437. Doi: 10.3923/pjbs.2007.4432.4437. Lanubile, A.; Ferrarini, A.; Maschietto, V.; Delledonne, M.; Marocco, A. and Bellin, D. 2014. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics. 15(1):710-726. Doi: 10.1186/1471-2164-15-710. Li, Z.; Wang, X.; Liao, T.; Feng, Q. and Zhang, D. 2016. A self-developed system for visual detection of vegetable seed vigor index. Int. J. Agric. Biol. 18(1):86-91. Doi: 10.17957/IJAB/15.0066. Maguire, J. D. 1962. Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 2(2):176-77. Doi: https://doi.org/10.2135/cropsci1962.0011183 X000200020033x. Marcos-Filho, J. 2015. Fisiologia de sementes de plantas cultivadas. Londrina. Abrates. 459-497 pp. Mavi, K.; Demir, I. and Matthews, S. 2010. Mean germination time estimates the relative emergence of seed lots of three cucurbit crops under stress conditions. Seed Sci. Technol. 38(1):14-25. Doi: https://doi.org/10.15258/sst.2010.38.1.02. Parsa, S.; García-Lemos, A. M.; Castillo, K.; Ortiz, V.; López-Lavalle, B.; Braun, J. and Vega, F. E. 2016. Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biology. 120(5):783-790. Doi: https://doi.org/10.1016/j.funbio.2016.01.017. Santos, G. R.; Tschoeke, P. H.; Silva, L. G.; Silveira, M. C. A. C.; Reis, H. B.; Brito, D. R. and Carlos, D. S. 2014. Sanitary analysis, transmission and pathogenicity of fungi associated with forage plant seeds in tropical regions of Brazil. J. Seed Sci. 36(1):54-62. Doi: https://doi.org/10.1590/S2317-15372014000100007.

Stefanello, R.; Muniz, M. F. B.; Nuner, U. R.; Dutra C. B. and Somavilla, I. 2015. Physiological and sanitary qualities of maize landrace seeds stored under two conditions. Ciência Agrotecnologica. 39(4):339-347. Doi: https://doi.org/10.1590/S1413-70542015000 400004. Tefera, T.; Mugo, S. and Beyene, Y. 2016. Developing and deploying insect resistant maize varieties to reduce pre-and post-harvest food losses in Africa. Food Security. 8(1):211-220. Doi: 10.1007/s12571-015-0537-7.

Wang, Y.; Peng, Y.; Zhuang, Q. and Zhao, X. 2020. Feasibility analysis of NIR for detecting sweet corn seeds vigor. J. Cereal Sci. 93(2):1-12. Doi: https://doi.org/10.1016/j.jcs.2020.102977.

Waterworth, W. M.; Bray, C. M. and West, C. E. 2015. The importance of safeguarding genome integrity in germination and seed longevity. J. Exp. Bot. 66(12):3549-3558. Doi: https://doi.org/10.1093/jxb/erv080.

Zhang, C.; Luo, T.; Liu, J.; Xian, M.; Yuan, J.; Hu, L. and Xu, Z. 2019. Evaluation of the low-temperature tolerance of rapeseed genotypes at the germination and seedling emergence stages. Crop Sci. 59(4):1709-1717. Doi: https://doi.org/10.2135/cropsci2019.03.0160.

Zhang, X.; Hirsch, C. N.; Sekhon, S. R.; Leon, N. and Kaeppler, S. M. 2016. Evidence for maternal control of seed size in maize from phenotypic and transcriptional analysis. J. Exp. Bot. 67(6):1907-1917. Doi: https://doi.org/10.1093/jxb/erw006.

Published

2022-02-08

How to Cite

Lima, Laís Stefany de Carvalho Falca, Cristina Fachini, Victor Roberto da Silva, Janice Rodrigues Placeres Borges, and Victor Augusto Forti. 2022. “Creole Maize from South-West of São Paulo, Brazil: Diversity and Seed Quality”. Revista Mexicana De Ciencias Agrícolas 13 (1). México, ME:15-28. https://doi.org/10.29312/remexca.v13i1.2790.

Issue

Section

Articles