Estimation of the water footprint of sugarcane production for the mills of the Papaloapan basin

Authors

  • ANGELES SUHGEY GARAY JACOME UNIVERSIDAD AUTONOMA CHAPINGO

DOI:

https://doi.org/10.29312/remexca.v13i1.2581

Keywords:

huella hídrica, sugarcane, water footprint

Abstract

In the world and in Mexico, agriculture uses approximately 75% of fresh water. The scarcity of water worldwide forces that water-saving techniques are increasingly used in the agricultural sector, since it has economic value. An important concept that helps to know the amount of water used in production and consumption is the water footprint. The objective of this research is to estimate the water footprint for the cultivation of sugarcane in the Papaloapan basin to propose measures that contribute to improving the efficiency of water use in this crop. For this research, the water footprint of the 12 sugar mills in the Papaloapan region was calculated, it was carried out following the procedure of Allen et al. (2006); FAO (2006); Haro et al. (2014). The largest water footprint is recorded in the areas that supply cane to the sugar mills of El Carmen (328 m3 t-1 of cane), San Nicolás (313 m3 t-1 of cane) and San José de Abajo (309 m 3), while the mill of San Pedro registered the smallest water footprint (239 m3 t-1). Per hectare, the areas that supply cane for El Carmen have the highest value with 21 301 m3, followed by San Nicolás with 21 221 m3 and by San Miguelito with 20 923 m3. In these areas, it is possible to reduce the water footprint by better managing the crop and using varieties with more productivity.

Downloads

Download data is not yet available.

References

AgroDer. 2012. Huella hídrica en México en el contexto de Norteamérica. WWF México y AgroDer. DF, México.

CICESE (Centro de Investigación Científica y de Educación Superior de Ensenada). 2020. Base de datos climatológica nacional (sistema CLICOM). http://clicom-mex.cicese.mx.

Ercin, A. E. and Hoeskstra, A. Y. 2014. Water footprint scenarios for 2050: a global analysis. Environment International. 64:71-82. http://dx.doi.org/10.1016/j.envint.2013.11.019.

FAO. 2006. Evapotranspiración del cultivo, guía para la determinación de los requerimientos de agua de los cultivos. Serie de Riego y Drenaje FAO No. 56. Food and Agriculture Organization of the United Nations, Rome. 322 p.

FAO. 2013. Afrontar la escasez de agua Un marco de acción para la agricultura y la seguridad alimentaria. Informe Sobre Temas Hídricos No. 38. 97 p. http://www.fao.org/3/a-i3015s.pdf.

Gerbens-Leens, P. W. Van Lienden, A. R.; Hoeskstra, A. Y. and Van der Meer, T. H. 2012. Biofuel scenarios in a wáter perspective: the global blue and green wáter footprint of road transport in 2030. Global Environmental Change. 22:764-775. http://dx.doi.org/10.1o16/ j.gloenvcha.2012.04.001.

Haro, M. E.; Navarro, I.; Thompson, R. and Jiménez, B. 2014. Estimation of the wáter footprint of sugarcane in Mexico is ethanol production an evironmentally feasible fuel option? J. Water Climate Change. 05.1:70-85. doi:102166/wcc.2013.056.

Hoekstra, A.Y. and Chapagain, A. K. 2006. Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manage. Doi:10.1007/s11269-006-9039-x.

Hoeskstra, A. Y.; Champagain, A. K.; Aldaya, M. M. and Mekonnen, M. M. 2011. The water footprint assessment manual. Setting the Global Estándar. Water Footprint Network. 228 p.

Jorrat, M.; Araujo, P. and Mele, F. 2018. Sugarcane water footprint in the province of Tucuman, Argentina. Comparison between different management practices. J. Cleaner Produc. 188:521-529. https://doi.org/10.1016/j.jclepro.2018.03.242.

Kongboon, R. and Sampattagul, S. 2012. The water footprint of sugarcane and cassava in northern Thailand. Social and Behavioral Sciences. 40:451-460. http://doi.org/10.1016/ j.sbspro.2012.03.215.

Lamastra, L.; Alina, N.; Novelli, E. and Trevisan, M. 2014. A new approach to asseessing the wáter footprint of wine: an Italian case study. Science of the total Environment. 490:48-756. https://doi.org/10.1016/j.scitotenv.2014.05.063.

Lins, R.; Maciel, A.; Toribio, B.; Paes, M. and Siqueira, J. 2019. Assessment of the gray water footprint of the pesticide mixture in a soil cultivated with sugarcane in the northern area of the State of Pernambuco, Brazil. J. Cleaner Produc. 234:925-932. https://doi.0rg./10.1016/ j.jclepro.2019.06.282.

Navarrete, M. C. 2016. Impacto ambiental y económico debido a la huella hídrica y de carbono del sistema bobino de engorda en la Comarca Lagunera, México. Tesis de Maestría en Ciencias. Universidad Autónoma Chapingo (UACH). Chapingo. Estado de México.

Raes, D. 2012. The ETo calculator. Evapotranpiration from a reference surface. Reference manual. Version 3.2. Rome. 38 p.

SEMARNAT. 2014. Secretaría de Medio Ambiente y Recursos Naturales. Programa Nacional Hídrico 2014-2018. DF, México. 139 p.

Shao, G. and Halpin, P. N. 1995. Climatic controls of eastern north American coastal tree and shrub distributions. USA. J. Biogeogr. 22(6):1083-1089.

Schyns, J. F. and Hoekstra, A. Y. 2014. The water footprint in Morocco: the added value of water footprint assessment for national water policy, value of water research report series No. 67, UNESCO-IHE, Delft, the Netherlands. 106 p.

WMO (World Meteorological Organization-Geneva, CH). 1992. International conference on water and the environment: develoment issues for the 21st century, Dublin, Ireland: the Dublin statement and report of the conference. 64 p. https://www.ircwash.org/resources/interna tional-conference-water-and-environment-development-issues-21st-century-26-31-0.

Zhuo, L.; Mekonnen, M. M. and Hoekstra, A. Y. 2016. Water footprint and virtual water trade of China: past and future, value of water research report series No. 69. UNESCO-IHE, Delft, the Netherlands. 70 p.

Published

2022-02-08

How to Cite

GARAY JACOME, ANGELES SUHGEY. 2022. “Estimation of the Water Footprint of Sugarcane Production for the Mills of the Papaloapan Basin”. Revista Mexicana De Ciencias Agrícolas 13 (1). México, ME:103-13. https://doi.org/10.29312/remexca.v13i1.2581.

Issue

Section

Articles

Most read articles by the same author(s)