Mutagénesis por radiación gamma para mejora genética de plantas de importancia alimentaria

Autores/as

  • Eréndira Rubio-Ochoa Ciencias Biológicas-Universidad Michoacana de San Nicolás de Hidalgo, Paseo Lázaro Cárdenas 2290, Emiliano Zapata, Melchor Ocampo, Uruapan, Michoacán. CP. 60170
  • Eulogio De la Cruz-Torres Instituto Nacional de Investigaciones Nucleares. Carretera Toluca-México s/n, La Marquesa, Estado de México. CP. 52750
  • Víctor Olalde-Portugal Laboratorio de Bioquímica Ecológica-Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional. Libramiento Norte Carretera Irapuato-León km 9.6, Irapuato, Guanajuato. CP. 36824
  • Rosa Elena Pérez-Sánchez Facultad de Químico Farmacobiología-Universidad Michoacana de San Nicolás de Hidalgo. Tzintzuzan 173, Matamoros, Morelia, Michoacán. CP. 58240
  • Juan Florencio Gómez-Leyva TecNM-Instituto Tecnológico de Tlajomulco. Carretera a San Miguel Cuyutlán km 10, Tlajomulco de Zúñiga, Jalisco. CP. 45640
  • Pedro Antonio García-Saucedo Laboratorio de bromatología-Facultad de Agrobiología ‘Presidente Juárez’-Universidad Michoacana de San Nicolás de Hidalgo. Paseo Lázaro Cárdenas 2290, Emiliano Zapata, Melchor Ocampo, Uruapan, Michoacán. CP. 60170

DOI:

https://doi.org/10.29312/remexca.v15i5.3747

Palabras clave:

cultivo de tejidos vegetales, fitomejoramiento, radiación ionizante

Resumen

La mutagénesis inducida por agentes físicos como la radiación gamma de Co60 en células o tejidos vegetales, genera cambios estructurales del ácido desoxirribonucleico e incrementó la variabilidad genética en los cultivos de importancia agrícola. Con frecuencia el material de inicio son especies vegetales establecidas en cultivos in vitro, lo que facilita el manejo y control de las condiciones fisicoquímicas además de incrementar el número de repeticiones en un mínimo espacio. Como producto se espera obtener variedades mejoradas con tolerancia a factores bióticos o abióticos además de mejorar las cualidades morfológicas y nutricionales. Esta revisión del estudio del arte recopiló información de los últimos 10 años para brindar un panorama actual del efecto de la radiación gamma sobre tejidos vegetales in vitro, abordando desde las fuentes de radiación, tipos de daño y mecanismos de reparación del ácido desoxirribonucleico, además del uso de marcadores moleculares para evidenciar las variaciones a nivel genético. Se analizarán los casos de éxito para cultivos de importancia agroindustrial en México compartiendo las expectativas actuales en el uso de esta tecnología.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdelnour-Esquivel, A.; Pérez, J.; Rojas, M.; Vargas, W. y Gatica-Arias, A. 2020. Use of gamma radiation to induce mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought. In vitro cellular and developmental biology plant. 56:88-97. https://doi.org/10.1007/s11627-019-10015-5.

Ali, H.; Ghori Z.; Sheikh, S. and Gul, A. 2015. Effects of gamma radiation on crop production. In: crop production and global environmental issues. Hakeem, K. Ed. Springer Cham. Switzerland. 27-78 pp.

Ángeles-Espino, A.; Dimas-Estrada, H. E.; Ramírez-Alvarado, D.; Cruz-Rubio, J. M.; Palmeros-Suárez, P. A. y Gómez-Leyva, J. F. 2020. Caracterización molecular de mutantes de Agave tequilana inducidas con radiación gamma Co60 y su efecto en la acumulación de fructooligosacáridos. Acta Universitaria. 30:1-11. https://doi.org/10.15174/au.2020.2696.

Bali, B. K. 2023. Different Types of DNA molecular markers and genotyping applications for mutation breeding. in biotechnologies and genetics in plant mutation breeding. Ahmad, Ed. Revolutionizing Plant Biology. 2086-2091 pp. https://doi.org/10.1201/9781003305088.

Bhat, R. S.; Brijesh, M. P.; Tilak, I. S. and Shirasawa, K. P. 2023. Molecular markers for mutant characterization. Ed. In: mutation breeding for sustainable food production and climate resilience. Springer Nature. Singapure. 205-232 pp.

Demidchik, V. 2015. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany. 109:212-228. http://dx.doi.org/10.1016/j.envexpbot.2014.06.021.

Due, M. S.; Susilowati, A. and Yunus, A. 2019. The effect of gamma rays irradiation on diversity of Musa paradisiaca var. sapientum as revealed by ISSR molecular marker. Biodiversitas journal of biological diversity. 20(5):1416-1422. https://doi.org/10.13057/biodiv/d200534.

El-Fiki, A.; Fahmy, E.; Doma, A. A.; Helmy, O.; Adly, M. y El-Metabteb, G. 2021. The genetic variation assessment of in vitro irradiated tomato (Lycopersicon esculentum Mill) by SCoT and ISSR markers. Journal of microbiology, biotechnology and food sciences. 10(4):557-565. https://doi/10.15414/jmbfs.2021.10.4.557-565.

Hong, M. J.; Kim, J. B.; Yoon, Y. H.; Ki, S. H.; Ahn, J. W.; Jeong, I. Y. and Kim, D. S. 2014. The effects of chronic gamma irradiation on oxidative stress response and the expression of anthocyanin biosynthesis-related genes in wheat (Triticum aestivum). International journal of radiation biology. 90(12):1218-1228. https://doi.org/10.3109/09553002.2014.934930.

Huerta-Olalde. A. M; Hernández-García A.; López-Gómez. R.; Fernández-Pavía, S. P.; Zavala-Páramo, M. G. and Salgado-Garciglia R. 2022. In vitro selection of blackberry (Rubus fruticosus ‘Tupy’) plants resistant to Botrytis cinerea using gamma ray-irradiated shoot tips. Plant Biotechnology. 39(2):165-171. https://doi.org/10.5511/plantbiotechnology.22.0312b.

IAEA. 2022b. Organización internacional de energía atómica. Base de datos de variedades mutantes. https://nucleus.iaea.org/sites/mvd/SitePages/Search.aspx.

Kariuki, J.; Horemans, N.; Saenen, E.; Hees, M.; Verhoeven, M.; Nauts, R.; Gompel A. V.; and Cuypers, A. 2019. The responses and recovery after gamma irradiation are highly dependent on leaf age at the time of exposure in rice (Oryza sativa L.). Environmental and experimental botany. 162:157-167. https://doi.org/10.1016/j.envexpbot.2019.02.020.

Le, K. C.; Ho, T. T.; Paek, K. Y. and Park, S. Y. 2019. Low dose gamma radiation increases the biomass and ginsenoside content of callus and adventitious root cultures of wild ginseng (Panax ginseng Mayer). Industrial crops and products. 130(408):6-24. https://doi.org/10.1016/j.indcrop.2018.12.056.

Ludovici, G. M.; de Souza, S. O.; Chierici, A.; Cascone, M. G.; Errico, F. and Malizia, A. 2020. Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster. Journal of environmental radioactivity. 222:1-10. https://doi.org/10.1016/j.jenvrad.2020.106375.

Manova, V. and Gruszka, D. 2015. DNA damage and repair in plants from models to crops. Frontiers in plant science. 6:1-26. https://doi.org/10.3389/fpls.2015.00885.

Mba, C. 2013. Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy. 3(1):200-231. https://doi.org/10.3390/agronomy3010200.

Nadeem, M. A.; Nawaz, M. A.; Shahid, M. Q.; Doğanm Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; Özkan, H. and Baloch, F. S. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment. 32(2):261-285. https://doi.org/10.1080/13102818.2017.1400401.

Nikam, A. A.; Devarumath, R. M.; Ahuja, A.; Babu, H.; Shitole, M. G. and Suprasanna, P. 2015. Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.). The crop journal. 3(1):46-56. https://doi.org/10.1016/j.cj.2014.09.002.

Oladosu, Y.; Rafii, M. Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H. A.; Miah, G. and Usman, M. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology and biotechnological equipment. 30(1):1-16. https://doi.org/10.1080/13102818.2015.1087333.

Penna, S. and Bhagwat, S. G. 2023. Mutagenesis and selection: reflections on the in vivo and in vitro approaches for mutant development. Ed. In: mutation breeding for sustainable food production and climate resilience. Springer nature. Singapure. 99-127 pp. https://doi.org/10.1007/978-981-16-9720-3-1.

Pérez-Jiménez, M.; Ignacio, T. C. and Pérez-Tornero, O. 2020. Inducing mutations in Citrus spp.: Sensitivity of different sources of plant material to gamma radiation. Applied Radiation and Isotopes. 157(13):1-10. https://doi.org/10.1016/j.apradiso.2019.109030.

Puerta-Ortiz, J. A. y Morales-Aramburo, J. 2020. Efectos biológicos de las radiaciones ionizantes. Revista Colombiana de Cardiología. 27(S1):61-71. https://doi.org/10.1016/j.rccar.2020.01.005.

Qi, W.; Zhang, L.; Wang, L.; Xu, H.; Jin, Q. and Jiao, Z. 2015. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings. Ecotoxicology and environmental safety. 115:243-249. https://doi.org/10.1016/j.ecoenv.2015.02.026

Rivai, R. R.; Isnaini, Y. and Yuzammi. A. 2021. Elucidation of the radiosensitivity level of Amorphophallus paeoniifolius (Dennst.) Nicolson embryogenic callus induced by gamma ray irradiation. In Biology and Life Sciences Forum. 11(1):1-8. https://doi.org/10.3390/IECPS2021-11951.

Riviello-Flores M. L.; Cadena-Iñiguez, J.; Ruiz-Posadas L. M.; Arévalo-Galarza, M. L.; Castillo-Juárez, I.; Soto-Hernández, M. and Castillo-Martinez, C. R. 2022. Use of gamma radiation for the genetic improvement of underutilized plant varieties. Plants. 11(9):1-19. https://doi.org/10.3390/ plants11091161.

Royani, J. I.; Abdullah, L. and Aisyah, S. I. 2021. Radio sensitivity of irradiated seed, plantlets, callus, and in vitro leaves from Indigofera zollingeriana Miq by gamma rays. In IOP conference series. Earth and Environmental Science. 913(1):1-10. https://doi.org/10.1088/1755-1315/913/1/012061.

Sharma, V.; Thakur, M. and Tomar, M. 2020. In vitro selection of gamma irradiated shoots of ginger (Zingiber officinale Rosc.) against Fusarium oxysporum f. sp. zingiberi and molecular analysis of the resistant plants. Plant cell, tissue and organ culture (PCTOC). 143(2):319-330. https://doi.org/10.1007/s11240-020-01919-x.

Sharma, V. and Thakur, M. 2021. Gamma irradiations induced morphological and biochemical variations in in vitro regenerated ginger (Zingiber officinale Rosc.) an invaluable medicinal spice. International journal of radiation biology. 97(12):1696-1704. https://doi.org/10.1080/09553002.2021.1988179.

Spencer, M. M.; Forster, B. P. y Jankuloski, L. 2021. Manual de mejoramiento por mutación. FAO/OIEA. 3ra Ed. Viena. https://doi.org/10.4060/i9285es. 5-141 pp.

Szwent, G. A. 2015. Redox chemistry: the essential. Ed. Free radicals in biology and medicine. Oxford university press, USA. 30-77 pp.

Tafurt, Y. C. y Marin, M. A. 2014. Principales mecanismos de reparación de daños en la molécula de DNA. Biosalud. 13(2):95-110.

Udage, A. C. 2021. Introduction to plant mutation breeding: different approaches and mutagenic agents. The journals of agricultural Sciences sri lanka. 16(3):466-483. http://doi.org/10.4038/jas.v16i03.9472.

Yasmin, K.; Arulbalachandran, D.; Soundarya, V. and Vanmathi, S. 2019. Effects of gamma radiation (γ) on biochemical and antioxidant properties in black gram (Vigna mungo L. Hepper). International Journal of Radiation Biology. 95(8):1135-1143. https://doi.org/10.1080/09553002.2019.1589022.

Publicado

2024-08-28

Cómo citar

Rubio-Ochoa, Eréndira, Eulogio De la Cruz-Torres, Víctor Olalde-Portugal, Rosa Elena Pérez-Sánchez, Juan Florencio Gómez-Leyva, y Pedro Antonio García-Saucedo. 2024. «Mutagénesis Por radiación Gamma Para Mejora genética De Plantas De Importancia Alimentaria». Revista Mexicana De Ciencias Agrícolas 15 (5). México, ME:e-3747. https://doi.org/10.29312/remexca.v15i5.3747.

Número

Sección

Artículos

Artículos más leídos del mismo autor/a