Pseudomonas spp. be néficas e n la a gricultura

Autores/as

  • Román Sánchez Carrillo Departamento de Fitotecnia-Universidad Autónoma Chapingo. Carretera Federal México-Texcoco km 38.5, Texcoco, Estado de México, México. CP. 56230.
  • Priscila Guerra Ramírez Departamento de Preparatoria Agrícola-Universidad Autónoma Chapingo. Carretera Federal México-Texcoco km 38.5, Texcoco, Estado de México, México. CP. 56230

DOI:

https://doi.org/10.29312/remexca.v13i4.2799

Palabras clave:

biocontrol, biofertilizantes, microorganismos benéficos, suelos supresivos

Resumen

Las bacterias del género Pseudomonas habitan una amplia variedad de ambientes, lo cual es reflejo de su diversa capacidad metabólica, esto les ha permitido adaptarse a condiciones variables del ambiente, así mismo, dicho género se considera ambivalente, debido a que algunas especies establecen relaciones benéficas con las plantas y otras patogénicas con plantas, animales y humanos. En el presente trabajo nos enfocamos en el impacto positivo que este género bacteriano tiene en el ámbito agrícola, debido a su capacidad como bacteria promotora del crecimiento vegetal (BPCV), siendo una de las mejores opciones como inoculante de plantas y suelos, para mejorar el crecimiento vegetal y el manejo de sus enfermedades, mediante la amplia gama de metabolitos que son capaces de producir las cepas benéficas, se han identificado bacterias de este género con capacidad diazotrófica, productoras de antibióticos, auxinas, sideróforos, enzimas celulolíticas, ácidos orgánicos para la solubilización de fósforo y promoción de la resistencia sistémica inducida contra fitopatógenos, lo cual las hace idóneas en la producción agrícola ya sea para el biocontrol o la biofertilización, así mismo, su uso no afecta al ambiente ni la salud de los agricultores.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aiyar, P.; Schaeme, D.; García-Altares, M.; Flores, D. C.; Dathe, H.; Hertweck, C. and Mittag, M. 2017. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nature Comm. 8(1):1-13. https://doi.org/10.1038/s41467-017-01547-8.

Baker, K. F. and CooK, R. J. 1991. Biological control of plant pathogens. San Francisco: W/H Freeman & Co. Millington, S. 28-29 pp.

Biessy, A. and Filion, M. 2018. Phenazines in plant‐beneficial Pseudomonas spp.: biosynthesis, regulation, function, and genomics. Environ Microbiol. 20(11):3905-3917. https://doi.org/ 10.1111/1462-2920.14395.

Bender, C. L.; Rangaswamy, V. and Loper, J. 1999. Polyketide production by plant-associated pseudomonads. Annual Review Phytopathol. 37(1):175-196. https://doi.org/10.1146/ annurev.phyto.37.1.175.

Chin‐A‐Woeng, T. F.; Bloemberg, G. V. and Lugtenberg, B. J. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytologist. 157(3):503-523. https://doi.org/10. 1046/j.1469-8137.2003.00686.x

Geudens, N. and Martins, J. C. 2018. Cyclic lipodepsipeptides from Pseudomonas spp.-biological swiss-army knives. Frontiers Microbiol. 9:1867. https://doi.org/10.3389/fmicb. 2018.01867.

Gross, H. and Loper, J. E. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Natural Product Reports. 26(11):1408-1446. https://doi.org/10.1039/b817075b.

Gutiérrez-García, K.; Neira-González, A.; Pérez-Gutiérrez, R. M.; Granados-Ramírez, G.; Zarraga, R., Wrobel, K. and Flores-Cotera, L. B. 2017. Phylogenomics of 2-4. Diacetylphloroglucinol-producing pseudomonas and novel antiglycation endophytes from piper Auritum. J. Natur. Produc. 80(7):1955-1963. https://doi.org/10.1021/acs.jnatprod. 6b00823.

Guttenberger, N.; Blankenfeldt, W. and Breinbauer, R. 2017. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioo. Med. Chem. 25(22):6149-6166. https://doi.org/10.1016/j.bmc.2017.01.002.

Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41(1):117-153. https://doi.org/10.1146/annurev.phyto.41.052002.095656.

Jara, H. A. D. y Elizondo E. A. M. 2011. Suelos supresivos a enfermedades radicales: ‘declinación del mal de pie (Gaeumannomyces graminis var. tritici) en trigo’, un estudio de caso. Agro Sur. 39(2):67-78. https://doi.org/10.4206/agrosur.2011.v39n2-01.

Jang, J. Y.; Yang, S. Y.; Kim, Y. C.; Lee, C. W.; Park, M. S.; Kim, J. C. and Kim, I. S. 2013. Identification of orfamide A as an insecticidal metabolite produced by pseudomonas protegens F6. J. Agric. Food Chem. 61(28):6786-6791. https://doi.org/10.1021/jf401218w.

Julian, W. T.; Vasilchenko, A. V.; Shpindyuk, D. D.; Poshvina, D. V. and Vasilchenko, A. S. 2021. Bacterial-derived plant protection metabolite 2, 4-diacetylphloroglucinol: effects on bacterial cells at inhibitory and subinhibitory concentrations. Biomolecules. 11(1):13. https://doi.org/10.3390/biom11010013.

Kankariya, R. A.; Chaudhari, A. B.; Gavit, P. M. and Dandi, N. D. 2019. 2-4. Diacetylphloroglucinol: a novel biotech bioactive compound for agriculture. In microbial interventions in agriculture and environment. Springer, Singapore. 419-452 pp. https://doi.org/10.1007/978-981-13-8391-5-16.

Keswani, C.; Singh, H. B.; García-Estrada, C.; Caradus, J.; He, Y. W.; Mezaache-Aichour, S. and Sansinenea, E. 2020. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Appl. Microbiol. Biotechnol. 104(3):1013-1034. https://doi.org/10.1007/s00253-019-10300-8.

Keel, C.; Oberhansli, T.; Wirthner, P.; Voisard, C.; Haas, D. and Défago, G. 1990. Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2-4, diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis.

Kumar, A.; Verma, H.; Singh, V. K.; Singh, P. P.; Singh, S. K.; Ansari, W. A. and Pandey, K. D. 2017. Role of Pseudomonas sp. in sustainable agriculture and disease management. In: agriculturally important microbes for sustainable agriculture. Springer, Singapore. 195-215 pp. https://doi.org/10.1007/978-981-10-5343-6-7.

Khan, H.; Parmar, N. and Kahlon, R. S. 2016. Pseudomonas-plant interactions I: plant growth promotion and defense-mediated mechanisms. In: Pseudomonas: molecular and applied biology. Springer, Cham. 419-468 pp. https://doi.org/10.1007/978-3-319-31198-2-10.

Kwak, Y. S.; Han, S.; Thomashow, L. S.; Rice, J. T.; Paulitz, T. C.; Kim, D. and Weller, D. M. 2011. Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2, 4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 77(5):1770-1776. https://doi.org/10.1128/aem.02151-10.

Lambowitz, A. M. and Slayman, C. W. 1972. Effect of pyrrolnitrin on electron transport and oxidative phosphorylation in mitochondria isolated from Neurospora crassa. J. Bacteriol. 112(2):1020-1022. https://doi.org/10.1128/jb.112.2.1020-1022.1972.

Ligon, J. M.; Hill, D. S.; Hammer, P. E.; Torkewitz, N. R.; Hofmann, D.; Kempf, H. J. and Pée, K. H. V. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Management Science: formerly Pesticide Science. 56(8):688-695. https://doi.org/10.1533/9781845698416.4.179.

Loper, J. E.; Henkels, M. D.; Rangel, L. I.; Olcott, M. H.; Walker, F. L.; Bond, K. L. and Taylor, B. J. 2016. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf‐5 to Drosophila melanogaster. Environ. Microbiol. 18(10):3509-3521. https://doi.org/10.1111/1462-2920.13369.

Lugtenberg, B. J. J.; De Weger, L. A. and Schippers, B. 1994. Bacterization to protect seed and rhizosphere against disease. BCPC Monograph. 57:293-302.

Lugtenberg, B. J.; Kravchenko, L. V. and Simons, M. 1999. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1(5):439-446. https://doi.org/10.1046/j.1462-2920.1999. 00054.x.

Ma, Z.; Geudens, N.; Kieu, N. P.; Sinnaeve, D.; Ongena, M.; Martins, J. C. and Höfte, M. 2016. Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Frontiers Microbiol. 7:382. https://doi.org/10.3389/fmicb.2016.00382.

Ma, Z.; Ongena, M. and Höfte, M. 2017. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Reports. 36(11):1731-1746. https://doi.org/10.1007/s00299-017-2187-z.

Malviya, D.; Sahu, P. K.; Singh, U. B.; Paul, S.; Gupta, A.; Gupta, A. R. and Brahmaprakash, G. P. 2020. Lesson from Ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Inter. J. Environ. Res. Public Health. 17(4):1434. https://doi.org/10.3390/ijerph17041434.

Mavrodi, D. V.; Blankenfeldt, W. and Thomashow, L. S. 2006. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 44(1):417-445. https://doi.org/10.1146/annurev.phyto.44.013106.145710.

National Center for Biotechnology Information. 2021. PubChem Compound. https://pubchem.ncbi.nlm.nih.gov/.

Neiendam, N. M. and Sørensen, J. 1999. Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol. Ecol. 30(3):217-227. https://doi.org/10.1111/j.1574-6941.1999.tb00650.x.

Nose, M. and Arima, K. 1969. On the mode of action of a new antifungal antibiotic, pyrrolnitrin. The J. Antibi. 22(4):135-143. https://doi.org/10.7164/antibiotics.22.135.

Pawar, S.; Chaudhari, A.; Prabha, R.; Shukla, R. and Singh, D. P. 2019. Microbial pyrrolnitrin: natural metabolite with immense practical utility. Biomolecules. 9(9):443. https://doi.org/10.3390/biom9090443.

Pierson, L. S. and Thomashow, L. S. 1992. Cloning and heterologous expression of the phenazine biosynthetic. Mol. Plant-Microbe Interact. 5(4):330-339. https://doi.org/10.1094/mpmi-5-330.

Pieterse, C. M.; Van Pelt, J. A.; Van Wees, S. C.; Ton, J.; Léon-Kloosterziel, K. M.; Keurentjes, J. J. and Van Loon, L. C. 2001. Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur. J. Plant Pathol. 107(1):51-61. https://doi.org/10.1023/a:1008747926678.

Preston, G. M. 2004. Plant perceptions of plant growth-promoting Pseudomonas. Philosophical Transactions of the Royal Society of London. Series B. Biol. Sci. 359(1446):907-918. https://doi.org/10.1098/rstb.2003.1384.

Quan, C. S.; Wang, X. and Fan, S. D. 2010. Antifungal compounds of plant growth promoting rhizobacteria and its action mode. In: plant growth and health promoting bacteria. Springer, Berlin, Heidelberg. 117-156 pp. https://doi.org/10.1007/978-3-642-13612-2-6.

Raaijmakers, J. M.; De Bruijn, I. and de Kock, M. J. 2006. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant-Microbe Interactions. 19(7):699-710. https://doi.org/10.1094/mpmi-19-0699.

Ramette, A.; Frapolli, M.; Fischer-Le Saux, M.; Gruffaz, C.; Meyer, J. M.; Défago, G.; Sutra, L. and Moënne-Loccoz, Y. 2011. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. System. Appl. Microbiol. 34(3):180-188. https://doi.org/10.1016/j.syapm. 2010.10.005.

Ran, L. X.; Li, Z. N.; Wu, G. J.; Van Loon, L. C. and Bakker, P. A. H. M. 2005. Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur. J. Plant Pathol. 113(1):59-70. https://doi.org/10.1007/s10658-005-0623-3.

Rathinasabapathi, B.; Liu, X.; Cao, Y. and Ma, L. Q. 2018. Phosphate-solubilizing Pseudomonads for improving crop plant nutrition and agricultural productivity. In: Crop Improvement Through Microbial Biotechnology. Elsevier. 363-372 pp. https://doi.org/10.1016/b978-0-444-63987-5.00018-9.

Rhodes, D. J. and Powell, K. A. 1994. Biological seed treatments the development process. BCPC Monograph. 57:303-310.

Sah, S. and Singh, R. 2015. Siderophore: structural and functional characterisation a comprehensive review. Agriculture Pol’nohospodárstvo. 61(3):97-114. https://doi.org/ 10.1515/agri-2015-0015.

Schwanemann, T.; Otto, M.; Wierckx, N. and Wynands, B. 2020. Pseudomonas as versatile aromatics cell factory. Biotechnol. J. 15(11):1900569. https://doi.org/10.1002/biot. 201900569.

Smirnov, V. A. and Kiprianova, E. A. 1990. Bacteria of Pseudomonas genus. Kiev. Naukova Dumka. 264 p.

Thomashow, L. S. 2013. Phenazines in the environment: microbes, habitats, and ecological relevance. In Microbial phenazines. Springer, Berlin, Heidelberg. 199-216 pp. https://doi.org/10.1007/978-3-642-40573-0-10.

Troppens, D. M.; Chu, M.; Holcombe, L. J.; Gleeson, O.; O’Gara, F.; Read, N. D. and Morrissey, J. P. 2013. The bacterial secondary metabolite 2, 4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genetics and Biology. 56:135-146. https://doi.org/10.1016/j.fgb.2013.04.006.

Turner, J. M. and Messenger, A. J. 1986. Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microbial Physiol. 27:211-275. https://doi.org/10.1016/ s0065-2911(08)60306-9.

Van Loon, L. C.; Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann Review Phytopathol. 36(1):453-483. https://doi.org/10.1146/ annurev.phyto.36.1.453.

Van Peer, R. and Schippers, B. 1992. Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherlands J. Plant Pathol. 98(2):129-139. https://doi.org/10.1007/bf01996325.

Weller, D. M.; Landa, B. B.; Mavrodi, O. V.; Schroeder, K. L.; De La Fuente, L.; Blouin, B. S. and Thomashow, L. S. 2007. Role of 2, 4‐diacetylphloroglucinol‐producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol. 9(1):4-20. https://doi.org/10.1055/s-2006-924473.

Weller, D. M.; Raaijmakers, J. M.; Gardener, B. B. M. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann. Review Phytopathol. 40(1):309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010.

Wendenbaum, S.; Demange, P.; Dell, A.; Meyer, J. M. and Abdallah, M. A. 1983. The structure of pyoverdine Pa, the siderophore of Pseudomonas aeruginosa. Tetrahedron Letters. 24(44):4877-4880. https://doi.org/10.1016/s0040-4039(00)94031-0.

Publicado

2022-06-21

Cómo citar

Sánchez Carrillo, Román, y Priscila Guerra Ramírez. 2022. «Pseudomonas Spp. Be néficas E N La a Gricultura». Revista Mexicana De Ciencias Agrícolas 13 (4). México, ME:715-25. https://doi.org/10.29312/remexca.v13i4.2799.

Número

Sección

Ensayos