Evaluation of HNBR as a substitute polymeric material for encapsulations in silicon photovoltaic panels

Authors

  • Francisco José González González Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Blvd. V. Carranza s/n, esquina con Ing. José Cárdenas Valdés, Saltillo, Coahuila. México. CP. 25280
  • Jorge Armando de los Santos-Rodriguez Universidad Tecnológica de la Región Centro de Coahuila. Carretera Monclova-Sabinas km 14.5, Monclova, Coahuila, México. CP. 25610
  • Dulce Magdalena Martínez-Almendáriz Universidad Tecnológica de la Región Centro de Coahuila. Carretera Monclova-Sabinas km 14.5, Monclova, Coahuila, México. CP. 25610
  • José Antonio González-Vázquez Universidad Tecnológica de la Región Centro de Coahuila. Carretera Monclova-Sabinas km 14.5, Monclova, Coahuila, México. CP. 25610
  • Angela Elizabeth Peña-Barrientos Sustentabilidad de los Recursos Naturales y Energía-CINVESTAV-Unidad Saltillo. Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila, México. CP. 25900
  • Carlos Andrés Covarrubias-Gordillo Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Blvd. V. Carranza s/n, esquina con Ing. José Cárdenas Valdés, Saltillo, Coahuila. México. CP. 25280

DOI:

https://doi.org/10.29312/remexca.v16i30.4054

Keywords:

HNBR, rubbers, silicon, solar energy, solar panels

Abstract

Currently, the use of renewable energies, specifically photovoltaic energy, has experienced almost exponential growth due to the increasingly intense energy demand in the world. This has led the photovoltaic industry to focus its efforts on the efficiency of photovoltaic generators. An area of study of great interest is the substitution of materials currently used either as encapsulants or insulators for the manufacture of silicon photovoltaic modules. In this work, polymeric coating tests for photovoltaic cells were carried out using hydrogenated nitrile butadiene rubber to study the feasibility of its use as a photovoltaic encapsulant. Polymer membranes were prepared by pressing under different conditions to obtain the desired optimal adhesion and transparency properties. Finally, tests of electrical variables were performed under standard laboratory conditions (25 °C, 1 000 W m-2, 1.5 air masses). The results of the measurements validate the use of hydrogenated nitrile butadiene as an encapsulating polymer for photovoltaic modules, since this material shows a greater thermal stability of more than 100 °C compared to conventional encapsulants, such as ethylene vinyl acetate, without affecting the passage of electrical current through the material, which makes it a more stable and durable option with potential application in larger-scale solar cells.

Downloads

Download data is not yet available.

References

Agroui, K. and Collins, G. 2003. Characterization of EVA encapsulant material by thermally stimulated current technique. Solar Energy Materials and Solar Cells. 80(1):33-45. https://doi.org/10.1016/S0927-0248(03)00112-0.

Agroui, K.; Jaunich, M. and Arab, A. H. 2016. Analysis techniques of polymeric encapsulant materials for photovoltaic modules: situation and perspectives. Energy Procedia. 93:203-210. https://doi.org/10.1016/J.EGYPRO.2016.07.171.

Badiee, A. I.; Ashcroft, I. A. and Wildman, R. D. 2016. The thermo-mechanical degradation of ethylene vinyl acetate is used as a solar panel adhesive and encapsulant. International Journal of Adhesion and Adhesives. 68:212-218. https://doi.org/10.1016/j.ijadhadh.2016.03.008.

Espinosa-Ramírez, B. H. A.; Garrido-Hernández, A.; García-Domínguez, G.; Vargas-León, E. A. and Castillo-Minjarez, J. M. A. 2023. Efecto de la temperatura en la eficiencia de paneles fotovoltaicos. Pädi boletín científico de ciencias básicas e ingenierías del ICBI. 11(5):184-190. https://doi.org/10.29057/icbi.v11iespecial5.11841.

Gaona-Ponce, B.; Altamirano-Cárdenas J. R.; Ocampo-Ledesma, J. G. y López-Canteñs, G. J. 2021. Influencia de la actitud, calidad y satisfacción de la energía fotovoltaica en la agricultura. Revista Ingeniería Agrícola. 11(2):45-54.

Genesca M. M.; Marin, R. M. R. 2014. Compuesto etileno acetato de vinilo (EVA) reforzado con neumáticos fuera de uso (GTR) propiedades dieléctricas, mecánicas y térmicas. Afinidad LXXI. 71(566):101-111.

Juárez-Luna, D. y Urdiales, E. 2022. Participación de la electricidad fotovoltaica en México hacia el año 2050: un estudio Delphi. The Anáhuac Journal. 22(2):72-79. https://doi.org/10.36105/theanahuacjour.2022v22n2.03.

Ordaz-Rivera, G. 2022. Sustentabilidad de la agricultura en México mediante el uso de energía solar fotovoltaica en los sistemas de riego. Universidad Nacional Autónoma de México (UNAM). 61-91 pp. https://hdl.handle.net/20.500.14330/TES01000833537.

Ossa-Arango, V. 2017. Ensamble y caracterización de un panel solar fotovoltáico. Pereira: Universidad Tecnológica de Pereira. 46-57 pp. https://repositorio.utp.edu.co/handle/11059/7616.

Pazur, R. J. 2005. Improving processability with low mooney HNBR for Automotive Applications. 3(5):1-9. https://www.rubbernews.com/article/20050101/DATA01/301019996.

Säckl, G.; Wallner, G. M.; Duchoslav, J.; Tiefenthaler, M. and Stifter, D. 2024. Advanced analysis of ethylene vinyl acetate copolymer materials for photovoltaic modules. Polymer Testing. 132:108381. https://doi.org/10.1016/j.polymertesting.2024.108381.

Published

2025-10-19

How to Cite

González González, Francisco José, Jorge Armando de los Santos-Rodriguez, Dulce Magdalena Martínez-Almendáriz, José Antonio González-Vázquez, Angela Elizabeth Peña-Barrientos, and Carlos Andrés Covarrubias-Gordillo. 2025. “Evaluation of HNBR As a Substitute Polymeric Material for Encapsulations in Silicon Photovoltaic Panels”. Revista Mexicana De Ciencias Agrícolas 16 (30). México, ME:e4054. https://doi.org/10.29312/remexca.v16i30.4054.

Issue

Section

Investigation notes