Bio-based membranes and nanocomposites: a sustainable innovation for potential use in wastewater

Authors

  • Samuel Awobifa-Olaolu Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza Ing. José Cárdenas Valdés S/N, República Oriente, Saltillo, Coahuila, México. CP. 25280.
  • Adolfo Romero-Galarza Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza Ing. José Cárdenas Valdés S/N, República Oriente, Saltillo, Coahuila, México. CP. 25280.
  • Rosa Idalia Narro-Céspedes Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza Ing. José Cárdenas Valdés S/N, República Oriente, Saltillo, Coahuila, México. CP. 25280.
  • S. Alejandro Lozano-Morales SECIHTI-Centro de Investigación en Química Aplicada. Blvd. Enrique Reyna Hermosillo #140, Col. San José de los Cerritos, Saltillo, Coahuila, México. CP. 25294
  • Corazón Giovanna Morales-Amaya Centro de Investigación en Química Aplicada. Blvd. Enrique Reyna Hermosillo # 140, Col. San José de los Cerritos, Saltillo, Coahuila, México. CP. 25294
  • Francisco J. González Facultad de Ciencias Químicas-Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza Ing. José Cárdenas Valdés S/N, República Oriente, Saltillo, Coahuila, México. CP. 25280

DOI:

https://doi.org/10.29312/remexca.v16i30.4052

Keywords:

biodegradable polymers, dye removal, photodegradation

Abstract

Currently, the pollution generated by the textile industry in the area of dyes is a major concern at the national and international levels. One of the proposals to mitigate this problem is membrane technology. In particular, those based on composite materials and polymers of a biodegradable nature have been the subject of study in recent decades as a replacement for conventional polymer-based membranes for water treatment, due to the growing demand for sustainable technologies for this application. This work addresses the preparation and use of polymeric nanocomposites using polylactic acid and titanium dioxide (TiO2) nanoparticles for their application as biodegradable membranes. The addition of these nanoparticles in the polymer matrix improves thermal stability and provides photocatalytic properties, allowing the removal of dyes, with potential application for wastewater treatment.

Downloads

Download data is not yet available.

References

Blanchard, R. and Mekonnen, T. H. 2022. Synchronous pyrolysis and activation of poly (ethylene terephthalate) for the generation of activated carbon for dye contaminated wastewater treatment. Journal of Environmental Chemical Engineering. 10(6):108810. https://doi.org/10.1016/j.jece.2022.108810.

Carmona, V. B.; Corrêa, A. C.; Marconcini, J. M. and Mattoso, L. H. C. 2015. Properties of a biodegradable ternary blend of thermoplastic starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). Journal of Polymers and the Environment. 23(1):83-89. https://doi.org/10.1007/s10924-014-0666-7.

Deepalekshm, P.; Yara, E.; Sabari, N. and Mohammad, H. 2021. Core-Shell nanofibers of polyvinyl alcohol/polylactic acidcontaining TiO2 nanotubes for natural sunlight drivenphotocatalysis. Macromolecular Materials and Engineering. 307(2):2100482. https://doi.org/10.1002/mame.202100482.

Furukawa, T.; Sato, H.; Murakami, R.; Zhang, J.; Duan, Y. X.; Noda, I.; Ochiai, S. and Ozaki, Y. 2005. Structure, Dispersibility, and crystallinity of poly(hydroxybutyrate)/poly( L -lactic acid) blends studied by ft-ir microspectroscopy and differential scanning calorimetry. Macromolecules. 38(15):6445-6454. https://doi.org/10.1021/ma0504668

George, J.; Jha, S. K.; Chakrabarty, D.; Chakraborty, A. and Vaidyanathan, V. K. 2024. Superior performance of titanium coated magnetic mesoporous silica nanocomposite based poly(lactic acid) membranes for the separation of chlorophenolic organic contaminants. Journal of Polymers and the Environment. 32(5):2325-2335. https://doi.org/10.1007/s10924-023-03098-0.

González, E. A. S.; Olmos, D.; Lorente, M. Á.; Vélaz, I. and González-Benito, J. 2018. Preparation and characterization of polymer composite materials based on pla/tio2 for antibacterial packaging. Polymers. 10(12):1365. https://doi.org/10.3390/polym10121365.

Hickman, R.; Walker, E. and Chowdhury, S. 2018. TiO 2 -PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants. Journal of Water Process Engineering. 24:74-82. https://doi.org/10.1016/j.jwpe.2018.05.015.

Hou, X.; Cai, Y.; Mushtaq, M.; Song, X.; Yang, Q.; Huang, F. and Wei, Q. 2018. Deposition of TiO2 nanoparticles on porous polylactic acid fibrous substrates and its photocatalytic capability. Journal of Nanoscience and Nanotechnology. 18(8):5617-5623. https://doi.org/10.1166/jnn.2018.15426.

Inai, R.; Kotaki, M. and Ramakrishna, S. 2005. Structure and properties of electrospun PLLA single nanofibres. Nanotechnology. 16(2):208-213. https://doi.org/10.1088/0957-4484/16/2/005.

Jamee, R. and Siddique, R. 2019. Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach. European Journal of Microbiology and Immunology. 9(4):114-118. https://doi.org/10.1556/1886.2019.00018.

Jem, K. J. and Tan, B. 2020. The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research. 3(2):60-70. https://doi.org/10.1016/j.aiepr.2020.01.002.

Karki, S.; Hazarika, G.; Yadav, D. and Ingole, P. G. 2024. Polymeric membranes for industrial applications: recent progress, challenges and perspectives. Desalination. 573:117200. https://doi.org/10.1016/j.desal.2023.117200.

Kim, A.; Hak-Kim, J. and Patel, R. 2022. Modification strategies of membranes with enhanced anti-biofouling properties for wastewater treatment: a review. Bioresource Technology. 345:126501. https://doi.org/10.1016/j.biortech.2021.126501.

Kumar, V.; Thakur, C. and Chaudhari, P. K. 2022. Anaerobic biological treatment of dye bearing water in anaerobic sequencing batch reactor: performance and kinetics studies. Journal of the Indian Chemical Society. 99(10):100673. https://doi.org/10.1016/j.jics.2022.100673.

Liu, M.; Cheng, Z.; Yan, J.; Qiang, L.; Ru, X.; Liu, F.; Ding, D. and Li, J. 2013. Preparation and characterization of TiO2 nanofibers via using polylactic acid as template. Journal of Applied Polymer Science. 128(2):1095-1100. https://doi.org/10.1002/app.38166.

Luo, T.; Farooq, A.; Weng, W.; Lu, S.; Luo, G.; Zhang, H.; Li, J.; Zhou, X.; Wu, X.; Huang, L.; Chen, L. and Wu, H. 2024. Progress in the preparation and application of breathable membranes. Polymers. 16(12):1686. https://doi.org/10.3390/polym16121686.

Mahmood, K.; Amara, U.; Siddique, S.; Usman, M.; Peng, Q.; Khalid, M.; Hussain, A.; Ajmal, M.; Ahmad, A.; Sumrra, S. H.; Liu, Z.-P.; Khan, W. S.; and Ashiq, M. N. 2022. Green synthesis of Ag@CdO nanocomposite and their application towards brilliant green dye degradation from wastewater. Journal of Nanostructure in Chemistry. 12(3):329-341. https://doi.org/10.1007/s40097-021-00418-5.

Mansoori, S.; Davarnejad, R.; Matsuura, T. and Ismail, A. F. 2020. Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polymer Testing. 84:106381. https://doi.org/10.1016/j.polymertesting.2020.106381.

Mhlanga, N. and Ray, S. S. 2014. Characterisation and thermal properties of titanium dioxide nanoparticles-containing biodegradable polylactide composites synthesized by Sol-Gel Method. Journal of Nanoscience and Nanotechnology. 14(6):4269-4277. https://doi.org/10.1166/jnn.2014.8271.

Mohammad, N. and Atassi, Y. 2021. TiO2/PLLA Electrospun nanofibers membranes for efficient removal of methylene blue using sunlight. Journal of Polymers and the Environment. 29(2):509-519. https://doi.org/10.1007/s10924-020-01895-5.

Mojiri, A.; Zhou, J. L.; Karimi-Dermani, B.; Razmi, E. and Kasmuri, N. 2023. Anaerobic membrane bioreactor (anmbr) for the removal of dyes from water and wastewater: progress, challenges, and future perspectives. Processes. 11(3):855. https://doi.org/10.3390/pr11030855.

Ren, G.; Wan, K.; Kong, H.; Guo, L.; Wang, Y.; Liu, X. and Wei, G. 2023. Recent advance in biomass membranes: fabrication, functional regulation, and antimicrobial applications. Carbohydrate Polymers. 305:120537. https://doi.org/10.1016/j.carbpol.2023.120537.

Romero-Galarza, A.; Dahlberg, K. A.; Chen, X. and Schwank, J. W. 2014. Crystalline structure refinements and properties of Ni/TiO2 and Ni/TiO2-Ce catalysts and application to catalytic reaction of “CO+NO”. Applied catalysis a: general. 478:21-29. https://doi.org/10.1016/j.apcata.2014.03.029.

Salahuddin, N.; Abdelwahab, M.; Gaber, M. and Elneanaey, S. 2020. Synthesis and design of norfloxacin drug delivery system based on PLA/TiO2 nanocomposites: antibacterial and antitumor activities. Materials Science and Engineering. 108:110337. https://doi.org/10.1016/j.msec.2019.110337.

Sarasua, J. R.; Prud’homme, R. E.; Wisniewski, M.; Borgne, A. and Spassky, N. 1998. Crystallization and melting behavior of polylactides. Macromolecules. 31(12):3895-3905. https://doi.org/10.1021/ma971545p.

Taib, N. A. A. B.; Rahman, M. R.; Huda, D.; Kuok, K. K.; Hamdan, S.; Bakri, M. K. B.; Julaihi, M. R. M. B. and Khan, A. 2023. A review on poly lactic acid (pla) as a biodegradable polymer. Polymer Bulletin. 80(2):1179-1213. https://doi.org/10.1007/s00289-022-04160-y.

Teamsinsungvon, A.; Ruksakulpiwat, C. and Ruksakulpiwat, Y. 2022. Effects of titanium-silica oxide on degradation behavior and antimicrobial activity of poly (lactic acid) composites. Polymers. 14(16):3310. https://doi.org/10.3390/polym14163310.

Thiam, B. G.; Magri, A. E.; Vanaei, H. R. and Vaudreuil, S. 2022. 3D printed and conventional membranes a review. Polymers. 14(5):1023. https://doi.org/10.3390/polym14051023.

Thomas, M. S.; Pillai, P. K. S.; Faria, M.; Cordeiro, N.; Kailas, L.; Kalarikkal, N.; Thomas, S. and Pothen, L. A. 2020. Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(II) from water. Journal of Applied Polymer Science. 137(34):48993. https://doi.org/10.1002/app.48993.

Wang, W. W.; Man, C. Z.; Zhang, C. M.; Jiang, L.; Dan, Y. and Nguyen, T. P. 2013. Stability of poly(l-lactide)/TiO2 nanocomposite thin films under UV irradiation at 254 nm. Polymer Degradation and Stability. 98(4):885-893. https://doi.org/10.1016/j.polymdegradstab.2013.01.003.

Wang, Y. and Wei, G. 2024. Recent trends in polymer membranes: fabrication technique, characterization, functionalization, and applications in environmental science (Part I). Polymers. 16(20):2889-. https://doi.org/10.3390/polym16202889.

Yuanfeng, P.; Farmahini-Farahani M.; O’Hearn, P.; Xiao, H. and Ocampo, H. 2016. An overview of bio based polymers for packaging materials. Journal of Bioresources and Bioproducts. 1(3):106-113. https://doi.org/10.21967/jbb.v1i3.49.

Zhang, H.; Li, H.; Gao, D. and Yu, H. 2022. Source identification of surface water pollution using multivariate statistics combined with physicochemical and socioeconomic parameters. Science of the Total Environment. 806:151274. https://doi.org/10.1016/j.scitotenv.2021.151274.

Zhang, S.; Shen, L.; Deng, H.; Liu, Q.; You, X.; Yuan, J.; Jiang, Z.; and Zhang, S. 2022. Ultrathin membranes for separations: a new era driven by advanced nanotechnology. Advanced Materials. 34(21):2108457. https://doi.org/10.1002/adma.202108457.

Published

2025-10-17

How to Cite

Awobifa-Olaolu, Samuel, Adolfo Romero-Galarza, Rosa Idalia Narro-Céspedes, S. Alejandro Lozano-Morales, Corazón Giovanna Morales-Amaya, and Francisco J. González. 2025. “Bio-Based Membranes and Nanocomposites: A Sustainable Innovation for Potential Use in Wastewater”. Revista Mexicana De Ciencias Agrícolas 16 (30). México, ME:e4052. https://doi.org/10.29312/remexca.v16i30.4052.

Issue

Section

Articles

Most read articles by the same author(s)