Statistical forecast of GDDs and CHs for northern Mexico improved for bias correction

Authors

  • Arturo Corrales Suastegui Campo Experimental Pabellón-INIFAP. Pabellón de Arteaga, Aguascalientes, México. CP. 20673. 2Campo Experimental Costa de Hermosillo-INIFAP. 3Campo Experimental Delicias-INIFAP. Delicias, Chihuahua. CP. 33000
  • Miguel Ángel González-González Campo Experimental Pabellón-INIFAP. Pabellón de Arteaga, Aguascalientes, México. CP. 20673
  • Gerardo Martínez-Díaz Campo Experimental Costa de Hermosillo-INIFAP
  • Noé Chávez-Sánchez Campo Experimental Delicias-INIFAP. Delicias, Chihuahua. CP. 33000
  • Luis Antonio González-Jasso Campo Experimental Pabellón-INIFAP. Pabellón de Arteaga, Aguascalientes, México. CP. 20673
  • Mario Primitivo Narváez-Mendoza Campo Experimental Pabellón-INIFAP. Pabellón de Arteaga, Aguascalientes, México. CP. 20673

DOI:

https://doi.org/10.29312/remexca.v16i30.4048

Keywords:

analogous years, bias correction, growing degree-days, chilling hours

Abstract

The existing information on monthly climate forecasts of agrometeorological variables, such as growing degree-days and chilling hours, is limited. This work presented the evaluation of a statistical forecast of growing degree-days and chilling hours for northern Mexico, with a focus on grape- and pecan-producing regions. The forecasting model is based on the analogous years method, using sea surface temperature anomalies through the monthly Niño-3.4 index, which is based on the ERSSTv5 database. In addition, it uses monthly historical databases of growing degrees-days and chilling hours, corresponding to the periods 1925-2012 and 1950-2020, respectively. To evaluate the model, monthly retrospective forecasts of growing degree-days and chilling hours were made for a period of 12 years (2012-2023) and contrasted with observations. It was found that the model underestimated up to -100 growing degree-days for regions in the south and center of the country; in contrast, for Sonora, Chihuahua, Durango, and Coahuila, the growing degree-days were underestimated with values ranging from -20 to -60 growing degree-days. In the case of chilling hours, it was found that the model underestimated up to 60 chilling hours, mainly in Chihuahua, Durango, Zacatecas, Baja California, and the center of the country. Based on these results, a bias correction method was applied, which was based on subtracting the mean bias, to reduce the error in the forecast. The corrected model showed a reduction in bias, mainly in cold months. Nevertheless, persistent bias was found in the model after applying bias correction.

Downloads

Download data is not yet available.

References

Anghileri, D.; Monhart, S.; Zhou, C.; Bogner, K.; Castelletti, A.; Burlando, P. and Zappa, M. 2019. The value of subseasonal hydrometeorological forecasts to hydropower operations: how much does preprocessing matter? Water Resour. Res. 55(12):10159-10178. https://doi.org/10.1029/2019WR025280.

Baskerville, G. L. and Emin, P. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology. 50(3):514-517.

Campoy, J. A.; Ruiz, D. and Egea, J. 2011. Dormancy in temperate fruit trees in a global warming context: a review. Scientia Horticulturae. 130(2):357-372. https://doi.org/10.1016/j.scienta.2011.07.011

Chandler, W. H. 1942. Deciduous orchards. Lea and Febiger, Philadelphia. 438 p.

Chhetri, A.; Ramjan, M. D. and Dolley, N. 2018. Various models of calculating of chill units in fruits crops. Indian Farmer. 5(04):439-442.

Corrales-Suastegui, A.; Martínez-Diaz, G.; Ruiz-Álvarez, O.; González- González, M. A. and Pavía, E. G. 2022. Temperature and precipitation towards the ed of the 21st Century in pecan producing areas of Mexico. Advanced Modelling and Innovations in Water Resources Engineering. 235-254 pp. Singapore: Springer. https://doi.org/10.1007/978-981-16-4629-4-18.

Corrales-Suastegui, A.; Ruiz-Alvarez, O.; Torres-Alavez, J. A. and Pavia, E. G. 2021. analysis of cooling and heating degree days over Mexico in present and future climate. Atmosphere. 12(9):1131. https://doi.org/10.3390/atmos12091131.

Corrales-Suastegui, A.; González-Jasso, L. A.; Narváez-Mendoza. M. P.; González González, M. A.; Ruíz-Álvarez, O. y Maciel-Pérez, L. H. 2014. PronEst: aplicación informática para generar pronósticos estacionales de lluvias y heladas de uno a tres meses. INIFAP-CIRNOC-CEPAB. Folleto técnico núm. 62. 21 p.

Flores-Gallardo, H.; Ojeda, W.; Flores, H.; Mejía-Sáenz, E. e Ibarra, E. 2012. Grados día y la programación integral del riego en el cultivo de papa. Terra Latinoamericana. 30(1):59-67.

INEGI. 2020. http://cuentame.inegi.org.mx/monografias/default.aspx?tema=me.

Jha, P. K. and Pathak, T. B. Seasonal climate forecasts show skill in predicting winter chill for specialty crops in California. Commun Earth Environ. 5:485. https://doi.org/10.1038/s43247-024-01623-0.

Liu, J. and Sherif, S. M. 2019. Combating spring frost with ethylene. Frontiers in Plant Science. 10:1408. https://doi.org/10.3389/fpls.2019.01408.

Livneh, B.; Bohn, T. J. and Pierce, D. W. 2015. A spatially comprehensive, hydrometeorological dataset for Mexico, the US. and Southern Canada 1950-2013. Sci. Data. 2:150042. https://doi.org/10.1038/sdata.2015.42.

Lorenz, C.; Portele, T. C.; Laux, P. and Kunstmann, H. 2021. Bias corrected and spatially disaggregated seasonal forecasts: a long-term reference forecast product for the water sector in semi-arid regions. Earth System Science Data. 13(6):2701-2722.

Luedeling, E. 2012. Climate change impacts on winter chill for temperate fruit and nut production: a review. Scientia Horticulturae. 144:218-229.

Luedeling, E. and Brown, P. H. 2011. A global analysis of the comparability of winter chill models for fruit and nut trees. International Journal of Biometeorology. 55:411-421. 10.1007/s00484-010-0352-y.

Luedeling, E., Girvetz, E. H., Semenov, M. A. and Brown, P. H. 2011. Climate change affects winter chill for temperate fruit and nut trees. PLoS One. 6(5):e20155. https://doi.org/10.1371/journal.pone.0020155.

McMaster, G. S. and Wilhelm, W. W. 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology. 87(4):291-300.

Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; Martens, B.; Miralles, D. G.; Piles, M.; Rodriguez-Fernández, N. J.; Zsoter, E.; Buontempo, C. and Thépaut, J. N. 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data. 13(9):4349-4383.

SIAP. 2022. Servicio de Información Agroalimentaria y Pesquera. 7-9 pp. https://www.gob.mx/cms/uploads/attachment/file/771603/Producci-n-Uva-en-M-xico.pdf.

Stensrud, D. J. and Skindlov, J. A. 1996. Gridpoint predictions of high temperature from a mesoscale model. Weather and Forecasting. 11(1):103-110. https://doi.org/10.1175/1520-0434(1996)011<0103: gpohtf>2.0.

Terence, L. W.; Wu, H. I. Sharpe, P. J. H.; Scholfield, R. M. and Coulson, R. N. 1984. Modeling insect development rates: a literature review and application of a biophysical model. Forum Annals of the Entomological Society of America. 77(2):208-225.

Published

2025-10-13

How to Cite

Corrales Suastegui, Arturo, Miguel Ángel González-González, Gerardo Martínez-Díaz, Noé Chávez-Sánchez, Luis Antonio González-Jasso, and Mario Primitivo Narváez-Mendoza. 2025. “Statistical Forecast of GDDs and CHs for Northern Mexico Improved for Bias Correction”. Revista Mexicana De Ciencias Agrícolas 16 (30). México, ME:e4048. https://doi.org/10.29312/remexca.v16i30.4048.

Issue

Section

Articles

Most read articles by the same author(s)