Zinc oxide-silver nanoparticles synthesized with plant extracts against Alternaria solani

Authors

  • Ileana Vera Reyes Departamento de Biociencias y Agrotecnología-Centro de Investigación en Química Aplicada. Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila, México. CP. 25294
  • Luis Gerardo Sarmiento-López Unidad de Investigación en Ambiente y Salud-Universidad Autónoma de Occidente. Unidad Regional Los Mochis, Sinaloa, México. CP. 81223
  • Joaquín Antonio Merlín-Trujillo Departamento de Fitomejoramiento-Universidad Autónoma Agraria Antonio Narro. Calz. Antonio Narro núm. 1923, Saltillo, Coahuila, México. CP. 25315
  • Hermila Trinidad García-Osuna Departamento de Fitomejoramiento-Universidad Autónoma Agraria Antonio Narro. Calz. Antonio Narro núm. 1923, Saltillo, Coahuila, México. CP. 25315
  • Luis Alfonso García-Cerda Departamento de Materiales Avanzados-Centro de Investigación en Química Aplicada. Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila, México. CP. 25294

DOI:

https://doi.org/10.29312/remexca.v16i30.4040

Keywords:

Antifungals, zinc nanoparticles, zinc-silver nanoparticles

Abstract

Pathogen control has traditionally been addressed through the use of synthetic fungicides, generating adverse effects on the environment and agricultural production systems. In contrast, plant extracts contain bioactive compounds that modulate the development of phytopathogens. In addition, their synergistic effect with nanoparticles offers a promising and sustainable strategy for their application in agriculture. The objective was to use plant extracts from Flourensia cernua, Larrea tridentata and Lippia graveolens to synthesize zinc and zinc-silver nanoparticles and evaluate their antifungal effect against Alternaria solani. The nanoparticles synthesized at 400 °C from each extract had particle sizes less than 30 nm and an irregular hemispherical morphology, which was confirmed by X-ray diffraction and scanning electron microscopy techniques. The best inhibition effect and the greatest reduction in spore production of the strains were observed with the nanoparticles generated using 1 000 mg L-1 of the L. graveolens extract, which inhibited 65% of growth and reduced spore production by 66% compared to the control. Adding silver to the nanoparticles significantly improved the ability to inhibit spore production, reaching 78% inhibition. These results suggested that zinc and zinc-silver nanoparticles, obtained from plant extracts, represent a promising alternative for the control of phytopathogenic fungi, and contribute to the reduction of the environmental impact associated with the excessive use of synthetic fungicides.

Downloads

Download data is not yet available.

References

Abdelhakim, H. K.; El‐Sayed, E. R. and Rashidi, F. B. 2025. Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. Journal of Applied Microbiology. 128(6):1634-1646. https://dx.doi.org/10.1111/jam.14581.

Ahmad, H.; Venugopal, K.; Rajagopal, K.; Britto, S.; Nandini, B.; Pushpalatha, H. G.; Konappa, N.; Udayashankar, A. C.; Geetha, N. and Jogaiah, S. 2020. Green synthesis and characterization of zinc oxide nanoparticles using eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules. 10(3):425. https://doi.org/10.3390/biom10030425.

Ahmad, T.; Xing, F.; Cao, C. and Liu, Y. 2024. Characterization and toxicological potential of Alternaria alternata associated with post-harvest fruit rot of Prunus avium in China. Frontiers in Microbiology. 15:1273076. https://doi.org/10.3389/fmicb.2024.1273076.

Anwar, A.; Masri, A.; Rao, K.; Rajendran, K.; Khan, N. A.; Shah, M. R. and Siddiqui, R. 2019. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Scientific Reports. 9(1):3122. https://doi.org/10.1038/s41598-019-39528-0.

Bustillo, P. A. E. 2010. Método para cuantificar suspensiones de esporas de hongos y otros organismos. Universidad Nacional de Colombia. https://doi.org/10.13140/RG.2.1.3594.5128.

Chandrasekaran, M. and Paramasivan, M. 2024. Plant growth-promoting bacterial (PGPB) mediated degradation of hazardous pesticides: a review. International Biodeterioration and Biodegradation. 190:105769. https://doi.org/10.1016/j.ibiod.2024.105769.

Chen, J.; Wu, L.; Song, K.; Zhu, Y. and Ding, W. 202). Nonphytotoxic copper oxide nanoparticles are powerful “nanoweapons” that trigger resistance in tobacco against the soil-borne fungal pathogen Phytophthora nicotianae. Journal of Integrative Agriculture. 21(11):3245-3262. https://doi.org/10.1016/j.jia.2022.08.086.

Georgekutty, R.; Seery, M. K. and Pillai, S. C. 2008. A highly efficient Ag-ZnO Photocatalyst: synthesis, properties, and mechanism. The Journal of Physical Chemistry C. 112(35):13563-13570. https://doi.org/10.1021/jp802729a.

Guilger-Casagrande, M. and Lima, R. 2019. Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in Bioengineering and Biotechnology. 7(287):1-16. Doi: 10.3389/fbioe.2019.00287.

Méndez-Andrade, R.; Vallejo-Pérez, M. R.; Loera-Alvarado, E.; Santos-Villarreal, G.; García-Cerda, L. A. and Vera-Reyes, I. 2022. Efficacy of biosynthesized silver nanoparticles from Larrea tridentata against Clavibacter michiganensis. Journal of Phytopathology. 170(2):91-99. https://doi.org/10.1111/jph.13058.

Meng, A.; Sun, S.; Li, Z. and Han, J. 2013. Synthesis, characterization, and dispersion behavior of ZnO/Ag nanocomposites. Advanced Powder Technology. 24(1):224-228. https://doi.org/10.1016/j.apt.2012.06.006.

Moradi, F.; Sedaghat, S.; Moradi, O. and Arab-Salmanabadi, S. 2021. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants. Inorganic and Nano-Metal Chemistry. 51(1):133-142. Doi:10.1080/24701556.2020.1769662.

Muñoz-Ordoñez, I. 2020. Síntesis de nanopartículas de óxido de zinc y óxido de zinc/plata asistida con extractos de Flourensia cernua DC: efecto antagónico contra Clavibacter michiganensis y en la germinación de semillas de tomate. 17-35 pp. https://ciqa.repositorioinstitucional.mx/jspui/bitstream/1025/625/1/idali%20mu%c3%91oz%20ordo%c3%91ez%20maestria%20en%20ciencias%20en%20agroplasticultura.pdf.

Nisar, P.; Ali, N.; Rahman, L.; Ali, M. and Shinwari, Z. K. 2019. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. JBIC Journal of Biological Inorganic Chemistry. 24(7):929-941. https://doi.org/10.1007/s00775-019-01717-7.

Orberá-Ratón, T. M.; Serrat-Díaz, M. J. and González-Giro, Z. 2009. Potencialidades de bacterias aerobias formadoras de endosporas para el biocontrol en plantas ornamentales. Fitosanidad. 13(2):95-100.

Rajwade, J. M.; Chikte, R. G. and Paknikar, K. M. 2020. Nanomaterials: new weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology. 104(4):1437-1461. https://doi.org/10.1007/s00253-019-10334-y.

Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A. and Ivask, A. 2020. Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Scientific Reports. 10:1-15. Doi: 10.1038/s41598-020-70169-w.

Shireen-Akhter, Q.; Sultana, Z.; Ud-Daula, M. A.; Ashikuzzaman, M. D.; Shamim, R.; Rahman, M. M.; Khaton, A.; Tang, M. A. K.; Rahman, M. S.; Hossain, M. F.; Lee, S. J. and Rahman, A. T. M. M. 2024. Optimization of green silver nanoparticles as nanofungicides for management of rice bakanae disease. Heliyon. 10:e27579. https://doi.org/10.1016/j.heliyon.2024.e27579.

Vera-Reyes, I.; Esparza-Arredondo, I. J. E.; Lira-Saldívar, R. H.; Granados-Echegoyen, C. A.; Álvarez-Román, R.; Vásquez-López, A.; Santos-Villarreal, G. and Díaz-Barriga, E. 2019. In vitro antimicrobial effect of metallic nanoparticles on phytopathogenic strains of crop plants. Journal of Phytopathology. 167(7-8):461-469. https://doi.org/10.1111/jph.12818.

Zhang, H.; Zheng, T.; Wang, Y., Li, T. and Chi, Q. 2024. Multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities. Frontiers in Plant Science. 15:1-15. Doi:10.3389/fpls.2024.1497006.

Published

2025-10-16

How to Cite

Vera Reyes, Ileana, Luis Gerardo Sarmiento-López, Joaquín Antonio Merlín-Trujillo, Hermila Trinidad García-Osuna, and Luis Alfonso García-Cerda. 2025. “Zinc Oxide-Silver Nanoparticles Synthesized With Plant Extracts Against Alternaria Solani”. Revista Mexicana De Ciencias Agrícolas 16 (30). México, ME:e4040. https://doi.org/10.29312/remexca.v16i30.4040.

Issue

Section

Articles

Most read articles by the same author(s)