Evaluation of water stress in strawberry crops under a humid climate

Authors

  • Guillermo Jesuita Pérez-Marroquín Facultad de Ciencias Agrícolas y Pecuarias-Benemérita Universidad Autónoma de Puebla. San Juan Acateno, Teziutlán, Puebla, México.
  • Edgar Platas-Galindo Facultad de Ciencias Agrícolas y Pecuarias-Benemérita Universidad Autónoma de Puebla. San Juan Acateno, Teziutlán, Puebla, México.
  • José Clemente Cruz-Pérez Postgrado de Socioeconomía Estadística e Informática-Desarrollo Rural-Colegio de Postgraduados-Campus Montecillo. Carretera México-Texcoco km 36.5, Montecillo, Texcoco. Estado de México, México. CP. 56264
  • Raúl Berdeja-Arbeu Facultad de Ciencias Agrícolas y Pecuarias-Benemérita Universidad Autónoma de Puebla. San Juan Acateno, Teziutlán, Puebla, México.
  • Fabián Enríquez-García Facultad de Ciencias Agrícolas y Pecuarias-Benemérita Universidad Autónoma de Puebla. San Juan Acateno, Teziutlán, Puebla, México.
  • Pablo Zaldívar-Martínez Facultad de Ciencias Agrícolas y Pecuarias-Benemérita Universidad Autónoma de Puebla. San Juan Acateno, Teziutlán, Puebla, México.

DOI:

https://doi.org/10.29312/remexca.v17i1.3971

Keywords:

efficient irrigation, evapotranspiration, soluble solids, water efficiency

Abstract

Strawberries (Fragaria x ananassa Duch.) are a crop of high commercial value whose productivity depends on efficient irrigation management, given their sensitivity to water deficits. In humid regions, high relative humidity reduces evaporative demand and limits the effectiveness of indicators based on leaf temperature, such as the crop water stress index (CWSI). This research aimed to evaluate the usefulness of the crop water stress index as a criterion for managing strawberry irrigation under humid climate conditions. The study was conducted in 2022 in a greenhouse of the Faculty of Agricultural and Livestock Sciences of the Meritorious Autonomous University of Puebla, Teziutlán, Puebla. Four irrigation treatments (100, 90, 80 and 70% of reference evapotranspiration, ETc) were established in a completely randomized design with four replications. Morphological and quality variables (number of flowers, number of fruits, polar and equatorial diameters, and total soluble solids) were recorded, and the crop water stress index was monitored throughout the cycle. The results showed that 80% ETc treatment maintained a yield similar to that of the 100% treatment, indicating potential water savings without affecting production. However, fruits with full irrigation reached a higher content of total soluble solids, whereas deficit treatments generated larger fruits but with lower sweetness, reflecting a trade-off between yield and quality. The crop water stress index registered low (0.3-0.55) and homogeneous values across treatments, confirming that, in humid climates, it is not a single reliable indicator and must be complemented with other physiological and productive variables.

Downloads

Download data is not yet available.

References

Baronti, S.; Orlandini, S.; Caruso, G. and Fontana, G. 2019. Water saving in strawberry cultivation through rational irrigation scheduling. Agricultural Water Management. 183(31):194-201. https://doi.org/10.1016/j.agwat.2018.10.016.

FAO. 2021. Food and Agriculture Organization of the United Nations. The state of the world’s land and water resources for food and agriculture. Systems at breaking point.

Ferreyra, E. R.; Sellés, V. G.; Peralta, A. J.; Burgos, R. L. y Valenzuela, B. J. 2002. Efectos de la restricción del riego en distintos períodos de desarrollo de la vid cv. Cabernet Sauvignon sobre producción y calidad del vino. Agricultura Técnica. 62(3):406-417.

García, A. E. 2004. Modificaciones al sistema de clasificación climática de Köppen. 5ta. edición. Instituto de Geografía-Universidad Nacional Autónoma de México (UNAM). 47-74 pp.

Giuliani, R.; Magnanini E. and Flore, J. A. 2001. Potential use of infrared thermometry for the detection of water deficit in apple and peach orchards. Acta Horticulturae. 557:38-43.

González-Dugo, V.; Moran, M. S.; Mateos, L. A. and Bryant, R. E. 2006. Canopy temperature variability is an indicator of crop water stress severity. Irrigation Science. 24(4):233-240. https://doi.org/10.1007/s00271-005-0022-8.

Gutiérrez-Colín, M.; Rodríguez, J. A.; Moreno-Pérez, M. y Peña-Sánchez, M. 2017. Respuesta de plantas de fresa a diferentes tensiones hídricas. Revista Chapingo Serie Horticultura. 23(2):93-103. https://doi.org/10.5154/r.rchsh.2016.10.030.

Idso, S. B.; Jackson, R. D.; Pinter, P. J.; Reginato, R. J. and Hatfield, J. L. 1982. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology. 27:81-89. https://doi.org/10.1016/0002-1571(81)90032-7.

Jackson, R. D.; Idso, S. B.; Reginato, R. J. and Pinter, P. J. 1981. Canopy temperature as a crop water stress indicator. Water Resources Research. 17(4):1133-1138.

Jones, H. G. 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany. 55(407):2427-2436.

Katimbo, X. A.; Rudnick, D. R.; DeJonge, K. C.; Lo, T. H.; Qiao, X.; Franz, T. E.; Nakabuye, H. N. y Duan, J. 2022. Crop water stress index computation approaches and their sensitivity under different water stress conditions. Agricultural Water Management. 267:1-16. https://doi.org/10.1016/j.agwat.2022.107676.

Kruskal, W. H. and Wallis, W. A. 1952. Use of ranks in one criterion variance analysis. Journal of the American Statistical Association. 47(260):583-621. https://doi.org/10.1080/01621459.1952.10483441.

Liotta, M. A.; Carrión, R. A.; Ciancaglini, N. y Olguín-Pringles, A. 2015. Riego por goteo. PROSAP-INTA. 1ra edición. Buenos Aires, Argentina. 150 p.

Liu, L.; Gao, W.; Ren, C.; Cheng, G.; Zhou, Y.; Huang, H. y Zhang, J. 2022. Applicability of the crop water stress index based on different computation approaches. Agricultural and Forest Meteorology, 327(1):1-12. https://doi.org/10.1016/j.agrformet.2022.109046.

López, R. L.; Ramírez, R. A.; Peña, M. A. V.; Cruz, I. L. y Cohen, I. S. 2009. Índice de estrés hídrico como un indicador del momento de riego en cultivos agrícolas. Agricultura Técnica en México. 35(1):92-106.

Mertens, S.; Verbraeken, L.; Sprenger, H.; De Meyer, S.; Demuynck, K.; Cannoot, B.; Merchie, J.; De Block, J.; Vogel, J. T.; Bruce, W.; Nelissen, H.; Maere, S.; Inzé, D. and Wuyts, N. 2023. Monitoring drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform. Plant Methods. 19(1):1-25. https://doi.org/10.3390/plants12203536.

Monteith, J. L. and Unsworth, M. H. 2013. Principles of environmental physics 4th ed. Academic Press. 217-247 pp.

Parkash, V. and Singh, S. S. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability. 12(10):1-28.

Pires, M. R.; Folegatti, M. V.; Passos, F. A.; Arruda, F. B. and Sakai, E. 2006. Vegetative growth and yield of strawberry under irrigation and soil mulches for different cultivation environments. Scientia Agricola. 63(5):417-425.

Rousseeuw, P. J. and Hubert, M. 2011. Robust statistics for outlier detection. Wiley interdisciplinary reviews: data mining and knowledge discovery. 1(1):73-79. https://doi.org/10.1002/widm.2.

Wilcox, R. R. 2012. Introduction to robust estimation and hypothesis testing 3rd Edition. Academic Press. 29-38 pp.

Published

2026-02-15

How to Cite

Pérez-Marroquín Guillermo Jesuita, Edgar Platas-Galindo, José Clemente Cruz-Pérez, Raúl Berdeja-Arbeu, Fabián Enríquez-García, and Pablo Zaldívar-Martínez. 2026. “Evaluation of Water Stress in Strawberry Crops under a Humid Climate”. Revista Mexicana De Ciencias Agrícolas 17 (1). México, ME:e3971. https://doi.org/10.29312/remexca.v17i1.3971.

Issue

Section

Articles