Testing the effect of chipilín extract and pyrrolizidine alkaloid in liquid diets on Bactericera cockerelli

Authors

  • Juan Carlos Delgado-Ortiz Secretaría de Ciencia, Humanidades, Tecnología e Innovación-Departamento de Parasitología-Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Yisa María Ochoa-Fuentes Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Agustín Hernández-Juárez Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Mariana Beltrán-Beache Departamento de Ciencias Agronómicas-Universidad Autónoma de Aguascalientes. Carretera Jesús María, Posta Zootecnica S/N, Aguascalientes, México. CP. 20920

DOI:

https://doi.org/10.29312/remexca.v16i8.3920

Keywords:

Crotalaria longirostrata, feeding bioassays, pyrrolizidine alkaloid, tomato psyllid

Abstract

Bactericera cockerelli is one of the most economically important and destructive pests in crops of the nightshade family, where chemical control has been the primary management strategy. The use of botanical extracts is a biorational alternative for managing this pest. The insecticidal activity of the genus Crotalaria is attributed to the presence of alkaloids, saponins, flavonoids and pyrrolizidine alkaloids. This study aimed to evaluate the insecticidal effect of C. longirostrata extract and the fraction of the pyrrolizidine alkaloid (1β,2β-Epoxy-1α-methoxymethyl-8α-pyrrolizidine) on B. cockerelli by supplying liquid diets. The feeding bioassays using liquid diets were conducted in the Toxicology Laboratory of the Antonio Narro Autonomous Agrarian University. A liquid diet supplemented with 5, 10, 15, 20, 30, 40 and 50 mg ml-1 of the methanolic extract of C. longirostrata and the fractionate of the pyrrolizidine alkaloid was implemented in plastic feeding chambers, where mortality was evaluated under a completely randomized design. The LC50 was determined for the 1β,2β-Epoxy-1α-methoxymethyl-8α-pyrrolizidine fraction and the methanolic extract of chipilín, obtaining a mortality in the methanolic extract between 42 and 78%, while the fraction of the pyrrolizidine alkaloid registered a mortality of 68-91%; the latter was the one that presented the lower LC50. The methanolic extract of chipilín and the fraction of the pyrrolizidine alkaloid showed insecticidal activity in liquid diets, demonstrating efficiency for their use in controlling B. cockerelli.

Downloads

Download data is not yet available.

References

Barrios-Díaz, B.; Arellano-Fuentes, M. E.; Vázquez-Huerta, G.; Barrios-Díaz, J. M.; Berdeja-Arbeu, R. y Hernández-Tapia, M. R. 2016. Control alternativo de paratrioza (Bactericera cockerelli Sulc.) en chile serrano (Capsicum annuum L.). Entomología Mexicana. 3(1):146-152. https://www.acaentmex.org/entomologia/revista/2016/AGR/Em%20146-152.pdf.

Cadena, H. M. A. 1993. La punta morada de la papa en México: Incidencia y búsqueda de resistencia. Agrociencia. 4(1):247-256.

Cerna, C. E.; Ail, C.; Landeros, J.; Sánchez, S.; Badii, M.; Aguirre, L. and Ochoa, Y. 2012. Comparison of toxicity and selectivity of the pest Bactericera cockerelli and its predator Chrysoperla carnea. Agrociencia. 46(8):783-793. https://www.scielo.org.mx/pdf/agro/v46n8/v46n8a4.pdf.

Cerna, C. E.; Beltrán, B. M.; Ochoa, Y. M.; Hernández, B. O. and Delgado, O. J. C. 2021. Bactericera cockerelli vector de Candidatus Liberibacter solanacearum, morfometría y haplotipos en poblaciones de México. Revista Mexicana de Ciencias Agrícolas. 26(1):81-94. https://doi.org/10.29312/remexca.v0i26.2939.

Cerna, C. E.; Hernández, O.; Landeros, J.; Aguirre, L. A. and Ochoa, Y. M. 2015. Insecticide-resistance ratios of three populations of Bactericera cockerelli (Hemiptera: Psylloidea: triozidae) in regions of northern Mexico. Florida Entomologist. 98(3):950-953. https://doi.org/10.1653/024.098.032.

Fürstenberg-Hägg, J.; Zagrobelny, M. and Bak, S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences. 14(5):10242-10297. https://doi.org/10.3390/ijms140510242.

Greenway, G. A. and Rondon, S. 2018. Economic impacts of zebra chips in Idaho, Oregon, and Washington. American Journal of Potato Research. 95(1):362-367. https://doi.org/10.1007/s12230-018-9636-2.

Gudmestad, N. C. and Secor, G. A. 2007. Zebra chip: a new disease of potato. Nebraska Potato Eyes. 19(1):1-4. https://www.ndsu.edu/fileadmin/potatopathology/potato-trials/Zebra-Chip-New-Potato-Disease.pdf.

Gutiérrez-Ramírez, J. A.; Betancourt-Galindo, R.; Aguirre-Uribe, L. A.; Cerna-Chávez, E.; Sandoval-Rangel, A.; Castro-del Ángel, E.; Chacón-Hernández, J. C.; García-López, J. I. and Hernández-Juárez, A. 2021. Insecticidal effect of zinc oxide and titanium dioxide nanoparticles against Bactericera cockerelli Sulc. (Hemiptera: Triozidae) on Tomato Solanum lycopersicum. Agronomy. 11(8):1460-1469. https://doi.org/10.3390/agronomy11081460.

Henderson, C. F. and Tilton, E. 1955. Tests with acaricides against the brown wheat mite. Journal of Economic Entomology. 48(2):157-161. https://doi.org/10.1093/jee/48.2.157.

Hernández, O. L.; Carranza, R. P.; Cobos, P. L. E.; López, L. L. I.; Ascasio, V. J. A. and Silva, B. S. Y. 2017. Bioguided fractionation from Solanum elaeagnifolium to evaluate toxicity on cellular lines and breast tumor explants. Vitae. 24(2):124-131. https://doi.org/10.17533/udea.vitae.v24n2a05.

Hernández-Reyes, A. J. Guzmán-Albores, M.; León-Rodríguez, A.; Ruíz-Valdiviezo, V. M.; Rodríguez-Ortiz, L. R. and Barba-Rosa, A. P. 2024. Toxicological and sedative effects of chipilin (Crotalaria longirostrata) leaf extracts obtained by maceration and supercritical fluid extraction. ACS Omega. 9(17):18862-18871. https://doi.org/10.1021/acsomega.3c08290.

Kolomiiets, Y. V.; Grygoryuk, I. P.; Butsenko, L. M. and Kalinichenko, A. V. 2019. Biotechnological methods control phytopathogenic bacteria in Tomatoes. Applied Ecology and Environmental Research. 17(2):3215-3230. http://dx.doi.org/10.15666/aeer/1702-32153230.

López López. H.; Beltrán, B. M.; Ochoa, Y. M.; Castro, E.; Cerna, E. y Delgado, J. C. 2022. Extracto metanólico de Crotalaria longirostrata: identificación de metabolitos secundarios y su efecto insecticida. Scientia Agropecuaria. 13(1):71-78. http://dx.doi.org/10.17268/sci.agropecu.2022.007.

Miranda-Granados, J.; Chacón, C.; Ruiz-Lau, N.; Vargas-Díaz, M. E.; Zepeda, L. G.; Alvarez-Gutiérrez, P.; Meza-Gordillo, R. and Lagunas-Rivera, S. 2018. Alternative use of extracts of chipilín leaves (Crotalaria longirostrata Hook. & Arn) as antimicrobial. Sustainability. 10(3):883-891. https://doi.org/10.3390/su10030883.

Morton, J. F. 1994. Pito (Erythrina berteroana) and chipilin (Crotalaria longirostrata), (fabaceae) two soporific vegetables of Central America. Economic Botany. 48(2):130-138. https://doi.org/10.1007/BF02908199.

Mutale-joan, C.; Redouane, B.; Najib, E.; Yassine, K.; Lyamlouli, K.; Laila, S.; Zeroual, Y. and Hicham, E. 2020. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports. 10:2820-821. https://doi.org/10.1038/s41598-020-59840-4.

Obembe, O. M. and Kayode, J. 2013. Insecticidal activity of the aqueous extracts of four under-utilized tropical plants as protectant of cowpea seeds from Callosobruchus maculatus infestation. Pakistan Journal of Biological Sciences. 16(4):175-179. https://doi.org/10.3923/pjbs.2013.175.179.

Oh, J. and Tamborindeguy, C. 2023. Treatment of rapamycin and evaluation of an autophagic response in the gut of Bactericera cockerelli (Sulč). Insects. 14(2):142-151. https://doi.org/10.3390/insects14020142.

Olaniyan, O.; Rodríguez-Gasol, N.; Cayla, N.; Michaud, E. and Wratten, S. D. 2020. Bactericera cockerelli (Sulc), a potential threat to China’s potato industry. Journal of Integrative Agriculture. 19(7):338-349. https://doi.org/10.1016/S2095-3119(19)62754-1.

Peñaloza, A. G. C. y Peláez, J. C. A. 2014. Evaluación de la actividad biológica de extractos de semillas de Crotalaria pallida (cascabelito) sobre el modelo Drosophila melanogaster. Revista Cubana de Plantas Medicinales. 19(3):144-153.

Prager, S. M. and Trumble, J. T. 2018. Psyllids: biology, ecology and management. In Sustain. Manag. Arthropod Pests Tomato. 163-181. https://doi.org/10.1016/B978-0-12-802441- 6.00007-3.

Ramesh, N. G. 2020. Iminosugars. In: carbohydrates in drug discovery and development. Tiwari, V. K. Ed. 331-381 pp. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816675-8.00008-7.

Rech, C.; Ribeiro, L. P.; Bento, J. M. S.; Pott, C. A. and Nardi, C. 2022. Monocrotaline presence in the Crotalaria (Fabaceae) plant genus and its influence on arthropods in agroecosystems. Brazilian Journal of Biology. 84:256916. https://doi.org/10.1590/1519-6984.256916.

Rivera-Martínez, R.; Ramírez-Dávila, J. F. y Acosta-Guadarrama, A. D. 2018. Distribución espacial de las poblaciones de huevos de Bactericera cockerelli Sulc. en el cultivo de tomate de cáscara (Physalis ixocarpa Brot.). Acta Universitaria. 28(5):24-33. https://doi.org/10.15174/au.2018.1944.

Roque-Enríquez, A.; Delgado-Ortiz, J. C.; Beltrán-Beache, M.; Ochoa-Fuentes, Y. y Cerna-Chávez, E. 2021. Parámetros agronómicos del tomate (Solanum lycopersicum L.) inoculado con “Candidatus Liberibacter solanacearum” y tratados con fosfitos. Ecosistemas y Recursos Agropecuarios. 8(1):2552. https://doi.org/10.19136/era.a8n1.2552.

Servicio de Información Agroalimentaria y Pesquera. 2024. Anuario Estadístico de la Producción Agrícola. https://nube.siap.gob.mx/cierreagricola/.

Shukla, E.; Thorat, L. J.; Nath, B. B. and Gaikwad, S. M. 2015. Insect trehalase: physiological significance and potential applications. Glycobiology. 25(4):357-367. https://doi.org/10.1093/glycob/cwu125.

Sumner, K. J. C.; Highet, F.; Arnsdorf, Y. M.; Back, E.; Carnegie, M.; Madden, S.; Carboni, S.; Billaud, W.; Lawrence, Z. and Kenyon, D. 2020. ‘Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterization of novel haplotypes from Craspedolepta spp. (Psylloidea: aphalaridae). Scientific Reports. 10(9):16567. https://doi.org/10.1038/s41598-020-73382-9.

Swisher, K. D.; Arp, A. P.; Bextine, B. R.; Álvarez, E. A.; Crosslin, J. M. and Munyaneza, J. E. 2013. Haplotyping the potato psyllid, Bactericera cockerelli, in Mexico and Central America. Southwestern Entomologist. 38(2):201-208. https://doi.org/10.3958/059.038.0205.

Swisher, K. D.; Munyaneza, J. E.; Velásquez-Valle, R. and Mena-Covarrubias, J. 2018. Detection of pathogens associated with psyllids and leafhoppers in Capsicum annuum L. in the Mexican states of Durango, Zacatecas and Michoacan. Plant Disease. 102(1):146-153. https://doi.org/10.1094/PDIS-05-17-0758-RE.

Tamburino, R.; Sannino, L.; Cafasso, D.; Cantarella, C.; Orrù, L.; Cardi, T.; Cozzolino, S.; D’Agostino, N. and Scotti, N. 2020. Cultivated tomato (Solanum lycopersicum L.) suffered a severe cytoplasmic bottleneck during domestication: Implications from chloroplast genomes. Plants. 9(10):1443. https://doi.org/10.3390/plants9111443.

Tang, X. T.; Longnecker, M. and Tamborindeguy, C. 2020. Acquisition and transmission of two ‘Candidatus Liberibacter solanacearum’ haplotypes by the tomato psyllid Bactericera cockerelli. Scientific Reports. 10(13):14000. https://doi.org/10.1038/s41598-020-70795-4.

Thoden, T. C.; Boppré, M. and Hallmann, J. 2009. Effects of pyrrolizidine alkaloids on the performance of plant-parasitic and free-living nematodes. Pest Management Science. 65(7):823–830. https://doi.org/10.1002/ps.1764.

Tlak Gajger, I. and Dar, S. A. 2021. Plant allelochemicals as sources of insecticides. Insects. 12(3):189. https://doi.org/10.3390/insects12030189.

Tucuch-Haas, J. I.; Silva-Aguayo, G. and Rodríguez-Maciel, J. C. 2020. Oviposition of Bactericera cockerelli (Sulc) (Hemiptera: triozidae) on Capsicum chinense (Jacq) treated with spiromesifen or spirotetramat. Revista Fitotecnia Mexicana. 43(3):317-323. https://doi.org/10.35196/rfm.2020.3.317.

Vega, G. M. T.; Rodríguez, J. C.; Díaz, G. O.; Bujanos, M. R.; Mota, S. D.; Martínez, C. J. L.; Lagunes, T. A. y Garzón, T. A. 2008. Susceptibilidad a insecticidas en dos poblaciones mexicanas del salerillo, Bactericera cockerelli (Sulc) (Hemiptera: triozidae). Agrociencia. 42(4):463-471. https://www.scielo.org.mx/pdf/agro/v42n4/v42n4a9.pdf.

Venkatesh, G. and Arivudainambi, S. 2024. Efficacy of solvent extracts of Crotalaria paniculata Willd. (Fabaceae) and Holoptelea integrifolia Planch. (Ulmaceae) against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). International Journal of Entomology Research. 9(11):139-144. https://www.entomologyjournals.com/assets/archives/2024/vol9issue11/9327.pdf.

Walker, P. W.; Allen, G. R.; Tegg, R. S.; White, L. R. and Wilson, C. R. 2015. The tomato potato psyllid, Bactericera cockerelli (Šulc, 1909) (Hemiptera: triozidae): a review of the threat of the psyllid to Australian solanaceous crop industries and surveillance for incursions in potato crops. Austral Entomology. 54(6):339-349. https://doi.org/10.1111/AEN.12129.

Published

2025-12-07

How to Cite

Delgado-Ortiz, Juan Carlos, Yisa Maria Ochoa-Fuentes, Agustín Hernández-Juárez, and Mariana Beltrán-Beache. 2025. “Testing the Effect of chipilín Extract and Pyrrolizidine Alkaloid in Liquid Diets on Bactericera Cockerelli”. Revista Mexicana De Ciencias Agrícolas 16 (8). México, ME:e3920. https://doi.org/10.29312/remexca.v16i8.3920.

Issue

Section

Articles

Most read articles by the same author(s)