Simulation of CIRNO-C2008 wheat yield in the Yaqui Valley using AquaCrop

Authors

  • Roberto Cora-Gil Instituto Tecnológico de Sonora. 5 de febrero 818, Ciudad Obregón, Sonora, México. CP. 85000
  • Arturo Francisco Orozco-Campos Instituto Tecnológico de Sonora. 5 de febrero 818, Ciudad Obregón, Sonora, México. CP. 85000
  • Marisol Ayala-Zepeda Instituto Tecnológico de Sonora. 5 de febrero 818, Ciudad Obregón, Sonora, México. CP. 85000
  • Fannie Isela Parra-Cota Campo Experimental Norman E. Borlaug-INIFAP. Norman E. Borlaug km 12, Ciudad Obregón, Sonora, México. CP. 85000
  • María Isabel Estrada-Alvarado Instituto Tecnológico de Sonora. 5 de febrero 818, Ciudad Obregón, Sonora, México. CP. 85000
  • Sergio de los Santos-Villalobos Instituto Tecnológico de Sonora. 5 de febrero 818, Ciudad Obregón, Sonora, México. CP. 85000

DOI:

https://doi.org/10.29312/remexca.v15i8.3850

Keywords:

plant physiology, soil fertility, stress, sustainability

Abstract

Worldwide, wheat is one of the most widely used cereals in the human diet and, in Mexico, it ranks second in production after corn. Nevertheless, its productivity is affected by the low efficiency of chemical fertilizers and the loss of nutrients in the soil, leading to environmental problems. It is necessary to look for alternatives to reduce the use of inorganic fertilizers and maintain or improve crop yield without affecting grain quality. This study calibrated and validated the AquaCrop simulation model for wheat crop development and yield. Experiments were carried out in the Yaqui Valley, Mexico, during the 2019-2020 cycle with the wheat (Triticum turgidum L.) variety CIRNO C2008 under different doses of nitrogen using urea (240, 120, and 0 kg N ha-1) to evaluate the impact of nutritional stress on crop development and yield. The analysis of variance showed that there were no significant differences (p< 0.05) between the simulated yields (7 189 t ha-1, 6 638 t ha-1 and 4 436 t ha-1 for the doses of 240, 120 and 0 kg N ha-1, respectively) and the observed yields (7.2 ±0.007 t ha-1, 6.6 ±0.02 t ha-1, 4.21 ±0.16 t ha-1, respectively). The results demonstrated that the yield simulation model for wheat crops was successfully calibrated using AquaCrop.

Downloads

Download data is not yet available.

References

Acevedo, F. E. 2020. Ecología química de interacciones entre plantas, insectos y controladores naturales de plagas herbívoras. Ed. Cenicafé. 116 p.

Alcántara-Cortés, J. S.; Acero-Godoy, J.; Alcántara-Cortés, J. D. y Sánchez-Mora, R. M. 2019. Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. Nova. 17(32):109-129. http://www.scielo.org.co/scielo.php?script=sci-arttext&pid=S179424702019000200109&lng=en&tlng=es.

Baseca, C. 2020. Plataforma tecnológica multimedia para la agricultura de precisión (platem precision agricultura). Doctoral dissertation, Universitat Politècnica de València.156 p.

Boudhina, N.; Masmoudi, M. M.; Alaya, I.; Jacob, F. y Mechlia, N. B. 2019. Use of AquaCrop model for estimating crop evapotranspiration and biomass production in hilly topography. Arabian Journal of Geosciences. 12(8):259-1-7. https://doi.org/10.1007/s12517-019-4434-9.

Cantillo, J. A. R.; Vélez, E. B.; Hernández, J. F. C. y Pizarro, R. J. 2019. Aplicación del modelo Aquacrop para un cultivo de maíz (Zea mays L). Revista Sistemas de Producción Agroecológicos. 10(2):19-49. https://doi.org/10.22579/22484817.730.

Díaz-Franco, A.; Espinosa-Ramírez, M. y Ortiz-Cháirez, F. E. 2018. Corrección de la clorosis férrica con quelato EDDHA en cultivos sembrados en suelo alcalino y calcáreo. Terra Latinoamericana. 36(1):23-30.

FAO. 2009. 2050. Organización de las Naciones Unidas para la Agricultura y la Alimentación. High-level experts forum: documentos de expertos. http://www.fao.org/wsfs/forum2050/wsfsbackgrounddocuments/wsfsexpertpapers/es/.

FAO. 2009. 2050: Organización de las Naciones Unidas para la Agricultura y la Alimentación. El cambio climático agravará la situación de los pobres. http://www.fao.org/news/story/es/item/35842/icode/#:~:text=El%20futuro%20de%20la%20agricultura,estrechamente%20ligados%20al%20cambio%20clim%C3%A1tico&text=Los%20expertos%20se%C3%B1alan%20que%20el,millones%20de%20personas%20en%202050.

Farfán, F. F. 2019. Descripción de la estructura del dosel arbóreo al interior de un sistema agroforestal con café. Centro Nacional de Investigaciones de Café (Cenicafé).

Félix-Fuentes, J.; Figueroa-López, P.; Fuentes-Dávila, G.; Valenzuela-Herrera, V.; Chávez-Villalba, G. y Alberto Mendoza-Lugo, J. 2010. CIRNO C2008: nueva variedad de trigo cristalino con alto rendimiento potencial para el estado de Sonora. Revista Mexicana de Ciencias Agrícolas. 1(5):739-744. http://www.scielo.org.mx/scielo.php?script=sci-arttext&pid=S200709342010000500016&lng=es&nrm=iso&tlng=es.

González-Robaina, F.; López-Vargas, D.; Cisneros-Zayas, E.; Herrera-Puebla, J. y Cid-Lazo, G. 2019. Calibración y análisis de sensibilidad del modelo Aquacrop para frijol en suelo ferralítico rojo compactado. Revista Ingeniería Agrícola. 9(4):3-12.

Grageda-Cabrera, O. A.; González-Figueroa, S. S.; Vera-Nuñez, J. A.; Aguirre-Medina, J. F. y Peña-Cabriales, J. J. 2018. Efecto de los biofertilizantes sobre la asimilación de nitrógeno por el cultivo de trigo. Revista Mexicana de Ciencias Agrícolas. 9(2):281-289. https://doi.org/10.29312/remexca.V9I2.1071.

Hernández, N., Soto, F. and Caballero, A. 2009. Modelos de simulación de cultivos. Características y usos. Cultivos Tropicales. 30(1):73-82.

Moriasi, D. N.; Arnold, J. G.; Liew, M. W. V.; Bingner, R. L.; Harmel, R. D. and Veith, T. L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3):885-900. Doi: 10.13031/2013.23153.

Nahar, S.; Zain, M. F. M.; Kadhum, A. A. H.; Hasan, H. A. and Hasan, M. R. 2017. Advances in photocatalytic CO2 reduction with water: a review. Materials. 10(6):629. https://doi.org/10.3390/MA10060629.

Nelson, G. C.; Rosegrant, M. W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M.; Magalhaes, M.; Valmonte-Santos, R.; Ewing, M. and Lee, D. 2009. Climate change. impact on agriculture and costs of adaptation. https://doi.org/10.2499/0896295354 9-11.

Ochoa-Noriega, C. A. 2022. Análisis económico-social de la sostenibilidad del modelo de desarrollo agrícola de la Costa de Hermosillo, México. https://repositorio.ual.es/bitstream/handle/10835/13721/01.%20Tesis.pdf?sequence=1&isAllowed=y.

Ordoñez-Paz, C. M. 2016. Efecto del cambio climático en la evapotranspiración y rendimiento del cultivo de papa, variedad Única bajo condiciones de La Molina. 80 p.

Porras-Jorge, Z. R. 2019. Desempeño del modelo Aquacrop para el cultivo de arroz bajo condiciones de humedecimiento y secado alternados en La Molina, Perú. In Universidad Nacional Agraria La Molina. http://190.119.243.88/handle/20.500.12996/4113.

Prasad, G.; Singh, S. M.; Patel, C.; Nema, A. K.; Singh, R. S.; Yadav, M. K. and Singh, K. K. 2018. Impact of temperature and solar radiation on wheat crops for Varanasi region of Uttar Pradesh. VayuMandal. 44(2):47-52.

Raes, D.; Steduto, P.; Hsiao, T. C. and Fereres, E. 2009. Aqua crop is the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal. 101(3):438-447. https://doi.org/10.2134/agronj2008.0140s.

Steduto, P.; Hsiao, T. C.; Raes, D. y Fereres, E. 2009. Aqua crop is the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal. 101(3):426-437 Doi: 10.2134/agronj2008.0139s.

Sun, X.; Chen, F.; Yuan, L. and Mi, G. 2020. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta. 251(4):1-14. https://doi.org/10.1007/s00425-020-03376-4/metrics.

Valenzuela-Aragón, B.; Parra-Cota, F. I.; Santoyo, G. and Arellano-Wattenbarger, G. and Santos-Villalobos, S. 2019. Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria. Plant and Soil. 367-384 pp. 10.1007/s11104-018-03901-1.

Zahra, N.; Hafeez, M. B.; Ghaffar, A.; Kausar, A.; Zeidi, M. A; Siddique, K. H. M. and Farooq, M. 2023. Plant photosynthesis under heat stress: effects and management. Environmental and Experimental Botany. 206. 105178. https://doi.org/10.1016/j.envexpbot.2022.105178.

Zepeda, M. A.; Ruiz, V. V.; Cota, F. I. P.; Chinchilla-Soto, C.; Cruz-Torres, E.; Ibba, M. I.; Alvarado, M. I. E. and Santos-Villalobos, S. 2024. genomic insights of a native bacterial consortium for wheat production sustainability. Current Research in Microbial Sciences. 6:100230-2. https://doi.org/10.1016/j.crmicr.2024.100230.

Published

2025-01-10

How to Cite

Cora-Gil, Roberto, Arturo Francisco Orozco-Campos, Marisol Ayala-Zepeda, Fannie Isela Parra-Cota, María Isabel Estrada-Alvarado, and Sergio de los Santos-Villalobos. 2025. “Simulation of CIRNO-C2008 Wheat Yield in the Yaqui Valley Using AquaCrop”. Revista Mexicana De Ciencias Agrícolas 15 (8). México, ME:e3850. https://doi.org/10.29312/remexca.v15i8.3850.

Issue

Section

Articles

Most read articles by the same author(s)