Susceptibility of Bemisia tabaci to chemical and organic insecticides in the Comarca Lagunera

Authors

  • Juan Carlos Carrillo-Aguilera Departamento de Parasitología Agrícola-Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Ernesto Cerna-Chavez Departamento de Parasitología Agrícola-Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Yisa María Ochoa-Fuentes Departamento de Parasitología Agrícola-Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coahuila, México. CP. 25315
  • Rocío de Jesús Díaz-Aguilar Estancia Posdoctoral CONAHCYT-Departamento de Parasitología Agrícola-Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coahuila, México. CP. 25315
  • José Manuel Vázquez-Navarro Facultad de Agricultura y Zootecnia-Universidad Juárez del Estado de Durango. Ejido Venecia, Gómez Palacio, Durango, México. CP. 35111

DOI:

https://doi.org/10.29312/remexca.v16i7.3824

Keywords:

Bemisia tabaci, Cucumis melo, extracts

Abstract

Melon crops are affected by Bemisia tabaci, which causes losses of up to 100% of the production; to control this pest, chemical active ingredients that can generate resistance are used. This research aimed to determine the susceptibility of B. tabaci populations through chemical and organic pesticides in melon-producing areas in the Comarca Lagunera. In 2023, four populations of B. tabaci were collected in the localities of Matamoros, Coahuila, Esmeralda, Tlahualilo and Ceballos, Durango. Bioassays were performed using the leaf immersion technique to determine the median lethal concentration (LC50), as well as to obtain the dose-mortality curve and the resistance ratio based on a susceptible line (Njcs). According to the results, the extracts of mustard and garlic and the active ingredients Imidacloprid and Dimethoate obtained the highest LC50, with values of 430.84, 404.19, 449.71 and 1 607 ppm in the Matamoros population. For the active ingredients Lambda-cyhalothrin and Chlorantraniliprole, the Ceballos population presented LC50 values of 234.18 and 165.31 ppm, respectively. In the case of the resistance ratio, the Matamoros population obtained the highest values for mustard and garlic extracts, Imidacloprid, and Dimethoate, with 16.23, 11.85, 11.89, and 6.12 X, respectively. For the active ingredients Lambda-cyhalothrin and Chlorantraniliprole, the Ceballos population reached values of 12.7 and 6.71 X. According to the results, the Matamoros population showed greater resistance to the active ingredients evaluated compared to the susceptible line.

Downloads

Download data is not yet available.

References

Bibliografía

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 3(2):265-267.

Álvarez, D. D. L.; Hayashida, R.; Cavallaro, M. C.; Santos, D. M.; Santos, L. M.; Müller, C.; Watanabe, L. F. M.; Bello, V. H.; Krause-Sakate, R.; Hoback, W. W. and Oliveira, R. C. 2024. Susceptibility of Bemisia tabaci Gennadius (Hemiptera: aleyrodidae) mediterranean populations found in São Paulo, Brazil to 11 Insecticides and Characterization of Their Endosymbionts. Insects. 15(9):670. https://doi.org/10.3390/insects15090670.

Balkan, T. and Kara, K. 2020. Neonicotinoid resistance in adults and nymphs of Bemisia tabaci (Genn., 1889) (Hemiptera: Aleyrodidae) populations in tomato fields from Tokat, Turkey. Turkish Journal of Entomology. 44(3):319-331. https://doi.org/10.16970/entoted.650742.

Bass, C. and Field, L. M. 2011. Gene amplification and insecticide resistance. 8(67):886-890. https://doi.org/10.1002/ps.2189.

Chen, J. C.; Wang, Z. H.; Cao, L. J.; Gong, Y. J.; Hoffmann, A. A. and Wei, S. J. 2018. Toxicity of seven insecticides to different developmental stages of the whitefly Bemisia tabaci MED (Hemiptera: aleyrodidae) in multiple field populations of China. Ecotoxicology. 27(4):742-751. https://doi.org/10.1007/s10646-018-1956-y.

Chew, M. Y.; Vega, P. A.; Palomo, R. M. y Jiménez, D. F. 2008. Enfermedades del melón (Cucumis melo L.) En diferentes fechas de siembra en la región Lagunera. México. Revista Chapingo Serie Zonas Áridas. 7(2):133-138.

Dağli, F.; Yükselbaba, U.; Ikten, C.; Topakci, N. and Gocmen, H. 2020. insecticide resistance in Bemisia tabaci (GENN.) populations collected from the mediterranean and Aegean regions of turkey. Applied Ecology and Environmental research. 18(6):7757-7768. http://dx.doi.org/10.15666/aeer/1806-77577768.

Dângelo, R. A. C.; Michereff‐Filho, M.; Campos, M. R.; Da-Silva, P. S. and Guedes, R. N. C. 2018. Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a neotropical scenario. Annals of Applied Biology. 172(1):88-99. https://doi.org/10.1111/aab.12404.

El-Zahi, E.; El-Sarand, E. and El-Masry, G. 2017. Activity of flonicamid and two neonicotinoid insecticides against Bemisia tabaci (Gennadius) and its associated predators on cotton plants. Egyptian Academic Journal of Biological Sciences. A, Entomology. 10(8):25-34. https://doi.org/10.21608/eajb.2017.11990.

Finney, D. J. 1971. Probit analysis. Cambridge at the Univ. Press. 3rd. Ed. 120 p.

Georghiou, G. P. 1962. Carbamate insecticides: toxic action of sinergized carbamates against twelve resistant strains of the housefly. J. Econ Entomol. 55(1):768-862.

Grávalos, C.; Fernández, E.; Belando, A.; Moreno, I.; Ros, C. and Bielza, P. 2015. Cross‐resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Management Science. 71(7):1030-1036. https://doi.org/10.1002/ps.3885.

Guerra, J. G. O.; Chávez, E. C.; Ochoa, F. Y. M; Flores, J. L.; Uribe, L. A. A. and Juárez, A. H. 2020. Insecticidal activity of plant extracts against whitefly nymphs Bemisia tabaci (Hemiptera: aleyrodidae) in laboratory. Journal of Entomology and Zoology Studies. 8(1):595-599.

Hassan, E.; Obaidoon, Y.; Mostafiz, M. M. and Senior, L. 2023. Effect of plant essential oil formulations on Bemisia tabaci MEAM1 (Gennadius) and its parasitoid Eretmocerus hayati (Zolnerowich and Rose). Plants. 12(24):4137. https://doi.org/10.3390/plants12244137.

Hopkinson, J. E. and Pumpa, S. M. 2019. Baseline susceptibility of Bemisia tabaci MEAM 1 (Hemiptera: aleyrodidae) in Australia to spirotetramat, cyantraniliprole and dinotefuran, with reference to pyriproxyfen cross‐resistance. Austral Entomology. 58(4):762-771. https://doi.org/10.1111/aen.12390.

Horowitz, A. R.; Ghanim, M.; Roditakis, E.; Nauen, R. and Ishaaya, I. 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science. 93(3):893-910. https://doi.org/10.1007/s10340-020-01210-0.

IRAC 001. 2009. Insecticide resistance action committee. Método de prueba de susceptibilidad.

Longhurst, C.; Babcock, J. M.; Denholm, I.; Gorman, K.; Thomas, J. D. and Sparks, T. C. 2013. Cross‐resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum. Pest Management Science. 69(7):809-813. https://doi.org/10.1002/ps.3439.

Macias-Flores, A.; Santillan-Ortega, C.; Robles-Bermúdez, A.; Caton, O. M. y Cambero-Campos, O. J. 2013. Casos selectos de resistencia a insecticidas en moscas blancas (Hemiptera: aleyrodidae) en el mundo. Biociencias. 2(2):4-16. https://doi.org/10.15741/revbio.02.02.02.

Mostafiz, M. M.; Jhan, P. K.; Shim, J. K. and Lee, K. Y. 2018. Methyl benzoate exhibits insecticidal and repellent activities against Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PLoS One. 13(12):1-14. https://doi.org/10.1371/journal.pone.0208552.

Naveen, N. C.; Chaubey, R.; Kumar, D.; Rebijith, K. B.; Rajagopal, R.; Subrahmanyam, B. and Subramanian, S. 2017. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific reports. 7(1):40634. https://doi.org/10.1038/srep40634.

Rajna, S.; Mahapatro, G.; Subramanian, S. and Chander, S. 2024. Determination of insecticide resistance in cotton whitefly in north India. The Indian Journal of Agricultural Sciences. 94(4):404-409. https://doi.org/10.56093/ijas.v94i4.143044.

Ranjbar, S.; Allahyari, H.; Talebi-Jahromi, K. and Heidari, A. 2022. Susceptibility of Bemisia tabaci (Gennadius) (Hemiptera: aleyrodidae) to different insecticides under water hardness condition and additives. Journal of Agricultural Science and Technology. 24(6):1385-1395. http://dx.doi.org/10.52547/jast.24.6.1385.

Regnault-Roger, C.; Vincent, C. and Arnason, J. T. 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annual review of entomology. 57(1):405-424. https://doi.org/10.1146/annurev-ento-120710-100554.

Romay, G. G. J.; Geraud, P. F.; Chirinos, T. D. and Demey, J. 2016. Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae): historia, situación actual y su rol como vector de enfermedades virales de plantas en Venezuela. Entomotropica. 31(35):276-293.

SADER-SIAP. 2024. Secretaría de Agricultura y Desarrollo Rural (SADER)-Servicio de Información Agroalimentaria y Pesquera (SIAP). Melón mexicano, un fruto con creciente demanda y producción nacional: Agricultura. https://www.gob.mx/agricultura/prensa/melon-mexicano-un-fruto-concrecientedemandayproduccionnacionalagricultura#:~:text=Cifras%20del%20Servicio%20de%20Informaci%C3%B3n,toneladas%20contabilizadas%20el%20a%C3%B1o%20previo/.

Saleem, M.; Hussain, D.; Hasan, M. U.; Sagheer, M.; Ghouse, G.; Zubair, M.; Brown, J. K. and Cheema, S. A. 2022. Differential insecticide resistance in Bemisia tabaci (Hemiptera: aleyrodidae) field populations in the Punjab province of Pakistan. Heliyon. 8(12): e12010. https://doi.org/10.1016/j.heliyon.2022.e12010.

Vargas-González, G.; Alvarez-Reyna, V. P.; Guigón-López, C.; Cano-Ríos, P.; Jiménez-Díaz, F.; Vásquez-Arroyo, J. y García-Carrillo, M. 2016. Patrón de uso de plaguicidas de alto riesgo en el cultivo de melón (Cucumis melo L.) en la Comarca Lagunera. Ecosistemas y Recursos Agropecuarios. 3(9):367-378.

Published

2025-10-30

How to Cite

Carrillo-Aguilera, Juan Carlos, Ernesto Cerna-Chavez, Yisa María Ochoa-Fuentes, Rocío de Jesús Díaz-Aguilar, and José Manuel Vázquez-Navarro. 2025. “Susceptibility of Bemisia Tabaci to Chemical and Organic Insecticides in the Comarca Lagunera”. Revista Mexicana De Ciencias Agrícolas 16 (7). México, ME:e3824. https://doi.org/10.29312/remexca.v16i7.3824.

Issue

Section

Articles

Most read articles by the same author(s)