Image analysis applied to morphological properties in wheat and oat cookies

Authors

  • Samuel Verdú-Amat Departamento de Tecnología de Alimentos-Universidad Politécnica de Valencia. Camino de Vera s/n, Valencia, España. CP. 46022
  • María del Carmen Granados-Nevárez Coordinación de Tecnología de Alimentos de Origen Vegetal-Centro de Investigación en Alimentación y Desarrollo AC. Carretera Gustavo Astiazarán Rosas núm. 46, Col. La Victoria, Hermosillo, Sonora. CP. 83304
  • Nina Gisella Heredia-Sandoval Coordinación de Tecnología de Alimentos de Origen Vegetal-Centro de Investigación en Alimentación y Desarrollo AC. Carretera Gustavo Astiazarán Rosas núm. 46, Col. La Victoria, Hermosillo, Sonora. CP. 83304
  • Alma Rosa Islas-Rubio Coordinación de Tecnología de Alimentos de Origen Vegetal-Centro de Investigación en Alimentación y Desarrollo AC. Carretera Gustavo Astiazarán Rosas núm. 46, Col. La Victoria, Hermosillo, Sonora. CP. 83304
  • Francisco Vásquez-Lara Coordinación de Tecnología de Alimentos de Origen Vegetal-Centro de Investigación en Alimentación y Desarrollo AC. Carretera Gustavo Astiazarán Rosas núm. 46, Col. La Victoria, Hermosillo, Sonora. CP. 83304

DOI:

https://doi.org/10.29312/remexca.v16i5.3784

Keywords:

cookie firmness, image segmentation, surface cracks

Abstract

The present study was conducted at the Center for Research in Food and Development in 2024. Image analysis is an essential tool that can be used in food process control. This study aimed to analyze, using imaging techniques, the morphological properties of cookies made with wheat and oats in different percentages and their relationship with cookie firmness. The texture profile of the dough obtained from the different formulations, and the weight, diameter, height, and firmness of the cookies were determined. A morphological characterization of the cookies was carried out by means of image analysis. These measurements focused on the overall color of the surface, as well as the characteristics of the surface and internal texture of the cookies through the analysis of the crumb. The results showed decreased firmness (151.96 N to 103.17 N) as the percentage of substitution increased, a similar behavior was observed in the weight and height of the cookie, whereas the diameter was not affected. Regarding the image analysis, greater cracking of the cookie surface was observed as the percentage of substitution increased. Color changes were observed in the crumb towards lighter areas, indicating a decrease in bubbles in the cookie crumb. Image analysis can be an important alternative to determine the quality of a finished product, in this case, a cookie.

Downloads

Download data is not yet available.

References

AACC, 2000. Approved Methods of American Association of Cereal Chemists. 10th Ed. The Association, St. Paul, MN, USA. Methods 44-15, 46-13, 30-25, 08-01. Baking Quality of Cookie Flour Method 10-50D.

Abdollahi-Moghaddam, M. R.; Rafe, A. and Taghizadeh, M. 2015. Kinetics of color and physical attributes of cookies during Deep fat frying by image processing techniques. Journal of Food Processing and Preservation. 39(1):91-99. https://doi:10.1111/jfpp.12268.

Abdullah, M. Z.; Guan, L. C.; Lim, K. C. and Karim, A. A. 2004. The applications of computer vision system and tomographic radar imaging for assessing physical properties of food. Journal of Food Eng. 61(1):125-135. https://doi.org/10.1016/S0260-8774(03)00194-8.

Ahmed, J. and Basu, S. 2022. Advances in food rheology and its applications. development in food rheology. Woodhead Publishing, Second Edition. 1-4 pp.

Ataş, M.; Yardimci, Y. and Temizel, A. 2012. A new approach to aflatoxin detection in chili pepper by machine vision. Computers and Electronics in Agriculture. 87(8):129-141. https://doi.org/10.1016/j.compag.2012.06.001.

Bennedsen, B. S.; Peterson, D. L. and Tabb, A. 2005. Identifying defects in images of rotating apples. Comput. Electron. Agric. 48(2):92-102. https://doi:10.1016/j.compag.2005.01.003.

Blanco, M. S.; León, A. E. and Ribottaa, P. D. 2019. Incorporation of dietary fiber on the cookie dough. Effects on thermal properties and water availability. Food Chemistry. 271(2):309-317. https://doi.org/10.1016/j.foodchem.2018.07.146.

Blasco, J.; Aleixos, N.; Cubero, S.; Gomez-Sanchis, J. and Molto, E. 2009. Automatic sorting of satsuma (Citrus unshiu) segments using computer vision and morphological features. Comput. Electron. Agric. 66(1):1-8. https://doi.org/10.1016/j.compag.2008.11.006.

Brosnan, T. and Sun, D. W. 2004. Improving quality inspection of food products by computer vision: a review. Journal of Food Eng. 61(1):3-16. https://doi.org/10.1016/S0260-8774(03)00183-3.

Dammer, K. H.; Möller, B.; Rodemann, B. and Heppner, D. 2011. Detection of head blight (Fusarium ssp.) in winter wheat by colour and multispectral image analyses. Crop Protection. 30(4):420-428. https://doi:10.1016/j.cropro.2010.12.015.

Du, C. J. and Sun, D. W. 2004. Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science and Technology. 15(5):230-249. https://doi.org/10.1016/j.tifs.2003.10.00.

Du, C. J. and Sun, D. W. 2006. Learning techniques used in computer vision for food quality evaluation: a review. Journal of Food Eng. 72(1):39-55. https://doi.org/10.1016/j.jfoodeng.2004.11.017.

Fustier, P.; Castaigne, F.; Turgeon, S. L. and Billaderis, C. G. 2009. Impact of commercial soft wheat flour streams on dough rheology and quality attributes of cookies. Journal of Food Engineering. 90(2):228-237. https://doi.org/10.1016/j.jfoodeng.2008.06.026.

Gerrard, D. E.; Gao, X. and Tan, J. 1996. Beef marbling and colour score determination by image processing. Journal of Food Science. 61(1):145-148. https://doi.org/10.1111/j.1365-2621.1996.tb14745.x.

Hoseney, R. C. and Rogers, D. E. 1994. Mechanism of sugar functionality in cookies: the science of cookie and cracker production. In: Faridi, H. Ed. 1st. St. Paul, MN. American Association of Cereal Chemists. 203-225 pp.

Inglett, G. E.; Chen, D. and Liu, S. 2015. Physical properties of gluten-free sugar cookies made from amaranth-oat composites. LWT-Food Science and Technology. 63(1):214-220. http://dx.doi.org/10.1016/j.lwt.2015.03.056.

Islas, A. R.; Preciado, R. E.; Granados, M. C.; Mercado, J. N. and Vásquez, F. 2012. Evaluación de textura en masas multigrano, maíz QPM y maíz blanco. Memorias 4to. Congreso Internacional de Nixtamalización. 77-81 pp.

Maldonado, R. and Pacheco, E. 2000. Elaboración de galletas con una mezcla de harina de trigo y de plátano verde. Archivos Latinoamericanos de Nutrición. 50(4):1-11. https://ve.scielo.org/scielo.php?script=sci-arttext&pid=S0004-06222000000400011.

Mendoza, L. and Aguilera, J. M. 2004. Application of image analysis for classification of ripening bananas. Journal Food Science. 69(9):471-477. https://doi.org/10.1111/j.1365-2621.2004.tb09932.x.

Munkevik, P.; Hall, G. and Duckett, T. 2007. A computer vision system for appearance based descriptive sensory evaluation of meals. Journal of Food Eng. 78(1):246-256. https://doi:10.1016/j.jfoodeng.2005.09.033.

Pace, B.; Cefola, M.; Renna, F. and Attolico, G. 2011. Relationship between visual appearance and browning as evaluated by image analysis and chemical traits in fresh-cut nectarines. Postharvest Biol. Technol. 61(2-3):178-183. https://doi:10.1016/j.postharvbio.2011.03.005.

Qiao, J.; Sasao, A.; Shibusawa, S.; Kondo, N. and Morimoto, E. 2004. Mobile fruit grading robot (part 1): development of a robotic system for grading sweet peppers. J. JSAM. 66(2):113-122. https://doi:10.11357/jsam1937.66.2-113.

Qiao, J.; Sasao, A.; Shibusawa, S.; Kondo, N. and Morimoto, E. 2005. Mapping yield and quality using the mobile fruit grading robot. Biosyst. Eng. 90(2):135-142. https://doi:10.1016/j.biosystemseng.2004.10.002.

Schindelin, J.; Arganda-Carreras, I. and Frise, E. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7):676-682. https://doi.org/10.1038/nmeth.2019.

Shafiee, S. S.; Minaei, S.; Charkari, N. M.; Ghasemi-Varnamkhasti, M. and Barzegar, M. 2013. Potential application of machine vision to honey characterization. Trends Food Sci. Technol. 30(2):174-177.https://doi:10.1016/j.tifs.2012.12.004.

Serna-Saldívar, S. R. O. 2003. Manufactura y control de calidad de productos basados en cereales. AGT Editor, SA. 193-194 pp.

Szczesniak, A. S. 2002. Texture is a sensory property. Food quality and preference. 13(4):215-225. https://doi.org/10.1016/S0950-3293(01)00039-8.

Slade, L. and Levine, H. 1994. Structure-function relationships of cookie and cracker ingredients. In: Faridi, H. Ed. The Science of Cookie and Cracker Production. Chapman and Hall, London. 23-142 pp.

Torres, J. D.; Torres, R.; Acevedo, D. and Gallo, L. A. 2015. Evaluación instrumental de los parámetros de textura de galletas de limón. Revista Vector. 10(1):14-25.

Wang, L.; Ye, F.; Li, S.; Wei, F.; Chen, J. and Zhao, G. 2017. Wheat flour enriched with oat b-glucan: a study of hydration, rheological and fermentation properties of dough. Journal of Cereal Science. 75(3):143-150. http://dx.doi.org/10.1016/j.jcs.2017.03.004.

Zapotoczny, P. 2011. Discrimination of wheat grain varieties using image analysis and neural networks. Part I. Single kernel texture. Journal Cereal Science. 54(1):60-68. https://doi:10.1016/j.jcs.2011.02.012.

Published

2025-07-21

How to Cite

Verdú-Amat, Samuel, María del Carmen Granados-Nevárez, Nina Gisella Heredia-Sandoval, Alma Rosa Islas-Rubio, and Francisco Vásquez-Lara. 2025. “Image Analysis Applied to Morphological Properties in Wheat and Oat Cookies”. Revista Mexicana De Ciencias Agrícolas 16 (5). México, ME:e3784. https://doi.org/10.29312/remexca.v16i5.3784.

Issue

Section

Articles