Glucokinins promote the early development of Capsicum chinense (Jacq.)

Authors

  • Alejandro Hernández-López Instituto de Agroingeniería-Universidad del Papaloapan. Av. Ferrocarril s/n, Ciudad Universitaria, Loma Bonita, Oaxaca, México. CP. 68400
  • Alma Xóchil Ávila-Alejandre Centro de Investigaciones Científicas-Instituto de Biotecnología-Universidad del Papaloapan. Circuito Central 200, Parque Industrial, San Juan Bautista, Tuxtepec, Oaxaca, México. CP. 68300

DOI:

https://doi.org/10.29312/remexca.v16i4.3712

Keywords:

conditioning, earliness, protected agriculture, seeds

Abstract

Capsicum chinense (Jacq.) has great economic importance, so it is a natural candidate for its implementation in protected agriculture (PA), but it has several challenges, the phenological stages and their adequate markers are not well defined, limiting the analysis of crop optimization. On the other hand, glucokinins have been shown to promote the early development of in vitro germination models. This study aimed to evaluate the effect of an animal glucokinin on the early development of Capsicum chinense (Jacq). The experiments were conducted in Tuxtepec, Oaxaca, 2016-2020, batches of 360 seeds per treatment (20 seeds x triplicate x six independent experiments) were exposed to glucokinin of animal origin, glucose, and Gao+glucose. Morphology parameters and growth rate were evaluated at each stage. The treatment with glucose and the combination delay germination (p≥ 0.05) but do not affect phenotype. Apparently, none affected the emergence (p≥ 0.05). There was a reduction in the overall time required for establishment (p 0.05), the treatment with animal glucokinin decreased by 30%, glucose by 26%, and the combination by 26.3%. Treatment with animal glucokinin increased radicle length and lateral root number (p≤ 0.05 for all), whereas the hypocotyl length in the treatments is greater than the control. It is suggested that the application of animal glucokinin could be useful to optimize the crops of habanero chilis in PA, favoring development and reducing the time spent in the production modules.

Downloads

Download data is not yet available.

References

Ávila-Alejandre, A.; Espejel, C. F.; Paz-Lemus, E.; Cortés-Barberena, E.; Díaz-León, S. F.; Dinkova, T. D.; Sánchez-Jiménez, E. and Pérez-Flores, L. J. 2013. Effect of insulin on the cell cycle of germinating maize seeds (Zea mays L.). England. Seed Science Research. 23(1):3-14. Doi.org/10.1017/S0960258512000281.

Azevedo, C. R.; Maciel, F. M.; Silva, L. B.; Ferreira, A. T. S.; Cunha, da M. and Machado, O. L. T. 2006. Isolation and intracellular localization of insulin-like proteins from leaves of Bauhinia variegate. Brazil. Brazilian Journal of Medical and Biological Research. 39(11):1435-1444. https://10.1590/s0100-879x2006001100007.

Bissoli, G.; Bono, M.; Martínez-Almonacid, I.; Moreno-Peris, E.; Renard, J.; Espinosa, A.; Naranjo, M. A.; Yenush, L.; Serrano, R.; Rodríguez-Burruezo, A. and Bueso, E. 2022. Seed coat lignification level is crucial in Capsicum spp. seed longevity. USA. Physiology Plant. 174(1):e13600-13609. https://10.1111/ppl.13600.

Badji, A.; Benseddik, A.; Bensaha, H.; Boukhelifa, A. and Hasrane, I. 2022. Design; technology; and management of greenhouse: a review. Journal of Cleaner Production. 37(1):133753-133779. Doi.org/10.1016/j.jclepro.2022.133753.

Dekkers, B. J. W.; Schuurmans, J. A. M. J. and Smeekens, S. C. M. 2004. Glucose delays seed germination in Arabidopsis thaliana. Planta. 218(4):579-588. Doi.org/10.1007/s00425-003-1154-9.

Díaz-Granados, V. H.; López-López, J. M.; Flores-Sánchez, J.; Olguín-Alor, R.; Bedoya-López, A.; Dinkova, T. D.; Salazar-Díaz, K.; Vázquez-Santana, S.; Vázquez-Ramos, J. M. and Lara-Núñez, A. 2020. Glucose modulates proliferation in root apical meristems via TOR in maize during germination. Plant physiology and biochemistry. 155(1):126-135. Doi.org/10.1016/j.plaphy.2020.07.041.

Eyster, W. H. and Ellis, M. M. 1924. Growth of maize seedlings as affected by glucokinin and insulin. Journal of General Physiology. 6(1):653-670. Doi:10.1085/jgp.6.6.653.

García-García, A. L.; García-Machado, F. J.; Borges, A. A.; Morales-Sierra, S.; Boto, C. A. and Jiménez-Arias, D. 2020. Pure organic active compounds against abiotic stress: a biostimulant overview. Frontiers in Plant Science. 11(1):575829-575846. https://doi.org/10.3389/fpls.2020.575829.

Garruña-Hernández, R.; Tournerie-Moreno, L.; Ayala-Garay, O.; Santamaría, J. M. and Pinzón-López, L. 2014. Acondicionamiento pre-siembra: una opción para incrementar la germinación de semillas de chile habanero (Capsicum chinense Jacq.). Agrociencia. 48(4):413-423 http://www.scielo.org.mx/pdf/agro/v48n4/v48n4a6.pdf.

Garrocho-Villegas, V.; Aguilar, C. R. and Sánchez-Jiménez, E. 2013. Insights into the TOR-S6K signaling pathway in maize (Zea mays L.) pathway activation by effector-receptor interaction. Biochemistry. 52(51):9129-9140. Doi.org/10.1021/bi401474x.

Goodman, D. B. P. and Davis, W. L. 1993. Insulin accelerates the postgerminative development of several fat storing seeds. Biochemical and Biophysical Research Communications. 190(1):440-446. Doi.org/10.1006/bbrc.1993.1067.

Hernández-López, A. 2024. Efecto de la Goa sobre la germinación, emergencia y establecimiento en Capsicum chinense (Jacq.). Tesis Doctoral. Universidad del Papaloapan. Tuxtepec. México. 110-112 pp.

Hernández-López, A.; Beltrán-Peña, E. G.; Amancio-Oliveira, A. E.; Nuñez-Gaona, O. and Avila-Alejandre, A. X. 2018. Preacondicionamiento del agua en la germinación y emergencia de Capsicum chinense (Jacq). Revista Mexicana de Ciencias Agrícolas. 9(8):1703-1714. Doi.org/10.29312/remexca.v9i8.1030.

Hernández-López, A.; Ávila-Alejandre, A. X.; Mendoza-Francisco, N. y Hernández-López, H. 2019. Diseño construcción, verificación de un germinador de bajo costo. Revista Mexicana de Ciencias Agrícolas. 9(8):1703-1714.

Laguna-Hernández, G.; Rio-Zamorano, C. A.; Meneses-Ochoa, I. G. and Brechú-Franco, A. E. 2017. Histochemistry and immunolocalisation of glucokinin in antidiabetic plants used in traditional Mexican medicine. European Journal of Histochemistry. 61(2):125-134. http://10.4081/ejh.2017.2782.

Magdaleno-Hernández, E.; Mejía-Contreras, A.; Martínez-Saldaña, T.; Jiménez-Velázquez, M. A.; Sánchez-Escudero, J. and García-Cué, J. L. 2016. Selección tradicional de semilla de maíz criollo. Agricultura Sociedad y Desarrollo. 13(3):437-447. http://www.scielo.org.mx/scielo.php?script=sci-arttext&pid=S1870-54722016000300437.

Meng, Y.; Zhang, N.; Li, J.; Shen, X.; Sheen, J. and Xiong, Y. 2022. TOR kinase; a GPS in the complex nutrient and hormonal signaling networks to guide plant growth and development. Journal of Experimental Botany. 73(20):7041-7054. Doi.org/10.1093/jxb/erac282.

Oliveira, E. A.; Ribeiro, E. S.; Cunha, da M.; Gomes, V. M.; Fernández, K. V. S.; Xavier-Filho, J. 2004. Insulin accelerates seedling growth of Canavalia ensiformis (Jacq. bean). Plant Growth Regulation. 43(1):57-62.

Pascual-Morales, E.; Arteaga-Tinoco, I.; García-Pineda, E.; Mellado-Rojas, M. E. y Beltrán-Peña, E. 2012. La insulina promueve el crecimiento de los pelos radiculares de Arabidopsis thaliana. Biológicas. 14(1):1-6.

Sánchez-Jiménez, E.; Beltrán-Peña, E. and Ortiz-López, A. 1999. Insulin stimulated ribosomal protein synthesis in maize embryonic axes during germination. Physiologia Plantarum. 105(2):148-154.

Sánchez-Linares, L.; Gavilanes-Ruíz, M.; Díaz-Pontones, D. M.; Guzmán-Chavez, F.; Calzada-Alejo, V.; Zurita-Villegas, V.; Luna-Loaiza, V.; Moreno-Sánchez, R.; Bernal-Lugo, I. and Sánchez-Nieto, S. 2012. Early carbon mobilization and radicle protrusion in maize germination. Journal of Experimental Botany. 63(12):4513-4526. https://doi.10.1093/jxb/ers130.

SIAP 2022. Márgenes de comercialización de chile habanero junio de 2022. https://www.gob.mx/cms/uploads/attachment/file/736751/06.-Chile-Habanero-may-2022.pdf. 1-2 pp.

Siddiqui, H.; Sami, F. and Hayat, S. 2020. Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydrate Research. 487(1):107884-107901. Doi.org/10.1016/j.carres.2019.107884.

Villa-Hernández, J. M.; Dinkova, T. D.; Aguilar-Caballero, R.; Rivera-Cabrera, F.; Sánchez de Jiménez, E. and Pérez-Flores, L. J. 2013. Regulation of ribosome biogenesis in maize embryonic axes during germination. Biochimie. 95(10):1871-1879. Doi.org/10.1016/j.biochi.2013.06.011.

Wang, M.; Gourrierec, J.; Jiao, F.; Demotes-Mainard, S.; Perez-García, M. D.; Ogé, L.; Hamama, L.; Crespel, L.; Bertheloot, J. and Chen, J. 2021. Convergence and divergence of sugar and cytokinin signaling in plant development. international journal of molecular sciences. 22(3):282-1303. Doi.org/10.3390/ijms22031282.

Zhu, G.; Ye, N. and Zhang, J. 2009. Glucose-induced delay of seed germination in rice is mediated by the suppression of aba catabolism rather than an enhancement of aba biosynthesis plant cell physiol. 50(3):644-651. Doi.org/10.1093/pcp/pcp022.

Published

2025-07-08

How to Cite

Hernández-López , Alejandro, and Alma Xóchil Ávila-Alejandre. 2025. “Glucokinins Promote the Early Development of Capsicum Chinense (Jacq.)”. Revista Mexicana De Ciencias Agrícolas 16 (4). México, ME:e3712. https://doi.org/10.29312/remexca.v16i4.3712.

Issue

Section

Articles