Valorization of agricultural biomass of chili peppers to obtain nutraceuticals

Authors

  • Luis Alfonso Jiménez-Ortega Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a Eldorado km 5.5, Col. Campo El Diez, Culiacán, Sinaloa, México. CP. 80110
  • Pedro de Jesús Bastidas-Bastidas Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a Eldorado km 5.5, Col. Campo El Diez, Culiacán, Sinaloa, México. CP. 80110
  • José Basilio Heredia Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a Eldorado km 5.5, Col. Campo El Diez, Culiacán, Sinaloa, México. CP. 80110.
  • Nayely Leyva-López Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a Eldorado km 5.5, Col. Campo El Diez, Culiacán, Sinaloa, México. CP. 80110.
  • Erick Paul Gutiérrez-Grijalva Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a Eldorado km 5.5, Col. Campo El Diez, Culiacán, Sinaloa, México. CP. 80110.

DOI:

https://doi.org/10.29312/remexca.v15i3.3675

Keywords:

Capsicum annuum L., antioxidants, phytochemicals, sustainability

Abstract

Mexico is the largest exporter of chili peppers and the second largest producer worldwide, due to which large quantities of biomass are produced, which are not always treated in a sustainable way, which can have a negative impact on the environment. One of the utilization trends is their use to obtain nutraceuticals. This research aimed to determine the phytochemicals present in poblano, jalapeno, and bell pepper biomasses produced in Culiacán, Sinaloa, Mexico, as well as to evaluate their antioxidant activity. The study was conducted in 2022. Phytochemical screening was performed and total free and bound phenolic compounds, flavonoids, antioxidant activity, capsaicinoids, and volatile compounds were quantified. Chili pepper biomasses are an important source of free phenols (1 010.14 ±41.81 mg GAE 100 g-1), bound phenols (158.66 ±8.87 mg GAE 100 g-1), flavonoids (158 ±8.87 mg QE 100 g-1), dihydrocapsaicin (1.762 μg kg-1), phytosterols, terpenes, tannins, saponins, and alkaloids (atropine), in addition to presenting antioxidant activity (35 744.04 ±618.6 μmol TE 100 g-1). It was concluded that biomasses contain biofunctional nutraceuticals, so their valorization for this purpose can promote the generation of circular economies in Mexico.

Downloads

Download data is not yet available.

References

Aza-González, C.; Núñez-Palenius, H. G. and Ochoa-Alejo, N. 2011. Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep. 30(5):695-706. Doi.org/10.1007/s00299-010-0968-8.

Baenas, N.; Belović, M.; Ilic, N.; Moreno, D. A. and García-Viguera, C. 2019. Industrial use of pepper (Capsicum annum L.) derived products: technological benefits and biological advantages. Food Chem. 274:872-885. Doi.org/10.1016/j.foodchem. 2018.09.047.

Barrajón-Catalán, E.; Álvarez-Martínez, F. J.; Borrás, F.; Pérez, D.; Herrero, N.; Ruiz, J. J. and Micol, V. 2020. Metabolomic analysis of the effects of a commercial complex biostimulant on pepper crops. Food Chem. 310:125818. Doi.org/10.1016/j. foodchem.2019.125818.

Bhat, S. S. and Rajanna, L. 2017. Preliminary antioxidant potential of fruit stalk of Capsicum annuum var. glabriusculum (Dunal) Heiser y Pickersgill. J. Pharm. Sci. Res. 9(8):1283-1287.

Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T. and Sánchez, A. 2018. Composting of food wastes: status and challenges. Bioresour. Technol. 248:57-67. Doi.org/10.1016/j.biortech.2017.06.133.

Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N. and Kim, C. K. 2020. Structure antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 10(1):2611-2620. Doi.org/10.1038/s41598-020-59451-z.

Chen, L. and Kang, Y. H. 2013. Anti-inflammatory and antioxidant activities of red pepper (Capsicum annuum L.) stalk extracts: comparison of pericarp and placenta extracts. J. Funct. Foods. 5(4):1724-1731. Doi.org/10.1016/j.jff.2013.07.018.

Chen, L. and Kang, Y. H. 2014. In vitro Inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of red pepper (Capsicum annuum L.) including pericarp, placenta, and stalk. J. Food Biochem. 38(3):300-306. Doi.org/10.1111/jfbc.12048.

Cho, S. Y.; Kim, H. W.; Lee, M. K.; Kim, H. J.; Kim, J. B.; Choe, J. S.; Lee, Y. M. and Jang, H. H. 2020. Antioxidant and anti-inflammatory activities in relation to the flavonoids composition of pepper (Capsicum annuum L.). Antioxidants. 9(10):986-996. Doi.org/10.3390/antiox9100986.

Daood, G. G.; Halasz, G.; Palotás, G.; Palotás, G.; Bodai, Z. and Helyes, L. 2015. HPLC determination of capsaicinoids with cross-linked C18 column and buffer free eluent. J. Chromatogr. Sci. 53(1):135-143. Doi.org/10.1093/chromsci/bmu030.

Ebrahimzadeh, M. A.; Safdari, Y. and Khalili, M. 2015. Antioxidant activity of different fractions of methanolic extract of the golden chanterelle mushroom Cantharellus cibarius (Higher Basidiomycetes) from Iran. Int. J. Med. Mushrooms. 17(6):557-565. Doi.org/10.1615/IntJMedMushrooms.v17.i6.60.

Estrada, B.; Bernal, M. A.; Díaz, J.; Pomar, F. and Merino, F. 2002. Capsaicinoids in vegetative organs of Capsicum annuum L. in relation to fruiting. J. Agric. Food Chem. 50(5):1188-1191. Doi.org/10.1021/jf011270j.

Published

2024-05-17

How to Cite

Jiménez-Ortega, Luis Alfonso, Pedro de Jesús Bastidas-Bastidas, José Basilio Heredia, Nayely Leyva-López, and Erick Paul Gutiérrez-Grijalva. 2024. “Valorization of Agricultural Biomass of Chili Peppers to Obtain Nutraceuticals”. Revista Mexicana De Ciencias Agrícolas 15 (3). México, ME:e3675. https://doi.org/10.29312/remexca.v15i3.3675.

Issue

Section

Articles

Most read articles by the same author(s)