Carbon variability in the soil of a rice field in Costa Rica

Authors

  • Roberto Aguirre-Elizondo Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica
  • Mayela María Monge Muñoz Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica https://orcid.org/0000-0003-1176-1086
  • Ana Gabriela Pérez-Castillo Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica https://orcid.org/0000-0001-5075-5573
  • Melvin Alpízar-Marín Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica
  • Helber Guillen-Arroyo Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica
  • Cristina Chinchilla-Soto Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica https://orcid.org/0000-0002-6507-0419

DOI:

https://doi.org/10.29312/remexca.v16i5.3664

Keywords:

climate change mitigation, geostatistical interpolation, kriging method, soil mapping

Abstract

Knowledge of the soil carbon stock (SCS) is vital for appropriate farming practices management, ie. tillage and to monitor SCS changes as mitigation strategies of carbon footprint. This study aims to quantify the variability and spatial distribution of the SCS. In an area of 1 ha 45 micro-pit (1 x 0.8 x 1 m) were divided into four strata. Vertical distribution of soil carbon was quantified along with other chemical and physical soil properties that affect rice production in Parrita, Costa Rica. A map of spatial prediction of the distribution and goodness-of-prediction values were calculated to estimate the effectiveness of the SCS prediction when different numbers of sampling points were used 45, 27, 15 and 7 microplots. As accurate measurements, the Mean Absolute Error and the Mean Square Error were calculated. In this study, the SCS was 85.8 (±2.6) Mg C ha-1, into the total profile (0-100 cm), where the first 30 cm represented 46.2%.  Prediction of the spatial distribution suggests that in annual agricultural crops, with tillage systems 15 sampling points ha-1 a can effectively estimate the SCS.

Downloads

Download data is not yet available.

Author Biographies

Roberto Aguirre-Elizondo, Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica

Agronomist gratuated from University of Costa Rica and with a master in agricultural sciences and natural resources with an emphasis on soils. Specialized in soil mapping and soil characterization, in oil palm crop in reesearch department at Palma Tica Company . His interest is in the field of mapping, genesis and classification of soils.

Mayela María Monge Muñoz, Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica

Agronomic Engineer. Professor of the Department of Agronomy at the University of Costa Rica Researcher in the Greenhouse Gas and Carbon Capture Laboratory and the Laboratory of Isotopic Applications and Pollutant Metabolism of the Environmental Pollution Research Center of the University of Costa Rica. She is currently finishing her master's degree in Agroecology. Her research mainly focuses on climate change, mitigation of greenhouse gas emissions and carbon capture in soil in agricultural systems and natural ecosystems. She has experience in coffee production.

Ana Gabriela Pérez-Castillo, Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica

Professor of the Department of Agronomy at the University of Costa Rica. She has been
director of several graduation projects related to the study of peatlands, greenhouse gas
mitigation, and soil carbon monitoring. Since 2014, she has been the coordinator of the
Greenhouse Gas and Carbon Capture Laboratory of the Environmental Pollution Research
Center of the University of Costa Rica. Her research interests focus on promoting
mitigation and adaptation actions against climate change by reducing greenhouse gas
emissions and increasing carbon capture in agricultural systems and their understanding in
natural ecosystems. Currently, she directs the research projects Climate-smart Agriculture
in rice crop, and Mitigation Strategies for Climate Change in the Management of
Beneficiary Waste and Coffee Crop Fertilization.

Cristina Chinchilla-Soto, Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica

Cristina Chinchilla-Soto is an Agricultural Engineer, graduated from the University of Costa Rica. She has a Master's Degree in Agricultural Sciences and Natural Resources with an emphasis in Soil Sciences from the same University. He obtained his PhD in Environmental and Atmospheric Sciences from the University of Edinburgh, UK in 2013. She works on various aspects related to the soil-plant-atmosphere continuum in agriculture, such as water use efficiency, greenhouse gases and soil carbon, combining field and laboratory techniques, including the use of stable isotopes. She is a researcher at the Environmental Pollution Research Center of the University of Costa Rica (UCR) since 2002. She is a professor at the Faculty of Agronomy of the UCR, in Agroecology and Crop Physiology.

References

Aguilera, E.; Lassaletta, L.; Gattinger, A. and Gimeno, B. S. 2013. Managing soil carbon for climate change mitigation and adaptation in mediterranean cropping systems: a meta-analysis. Agriculture, Ecosystems and Environment. 168:25-36. https://doi.org/10.1016/j.agee.2013.02.003.

Ahmed, I. S.; Hassan, F. A.; Sulieman, M. M.; Keshavarzi, A.; Elmobarak, A. A.; Yousif, K. M. and Brevik, E. C. 2022. Using environmental covariates to predict soil organic carbon stocks in Vertisols of Sudan. Geoderma Regional. 31(e00578):1-16. https://doi.org/10.1016/j.geodrs.2022.e00578.

Alvarado-Velas, M.; Monge-Cordero, M.; Arias-Fernández, M.; Chinchilla-Cortés, J.; Briones-Cambronero, K.; and Alfaro-Martínez, A. 2021. Estudio hidrogeológico de los acuíferos del Pacífico Central, provincias de Puntarenas y San José, Costa Rica, América Central (Informe técnico). Dirección de Investigación y Gestión Hídrica, Unidad de Investigación Hidrogeológica. SENARA. 12-246 pp.

Anantha, K. C.; Majumder, S. P.; Padhan, D.; Badole, S.; Datta, A.; Mandal, B. and Gade, K. R. 2018. Carbon dynamics, potential and cost of carbon sequestration in double rice cropping system in semiarid southern India. Journal of Soil Science and Plant Nutrition. 18(2):418-434. https://doi.org/10.4067/S0718-95162018005001302.

Augustin, C. and Cihacek, L. J. 2016. relationships between soil carbon and soil texture in the northern great plains. Soil Science. 181(8):386-392. Doi: https://doi.org/10.1097/SS.0000000000000173.

Averill, C. and Waring, B. 2018. Nitrogen limitation of decomposition and decay: How can it occur?. Global Change Biology. 24(4):1417-1427. https://doi.org/10.1111/gcb.13980.

Bhunia, G. S.; Shit, P. K. and Maiti, R. 2018. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences. 17(2):114-126. https://doi.org/10.1016/j.jssas.2016.02.001.

Bogunovic, I.; Kisic, I.; Mesic, M.; Percin, A.; Zgorelec, Z.; Bilandžija, D.; Jonjic, A. and Pereira, P. 2017. Reducing sampling intensity in order to investigate spatial variability of soil pH, organic matter and available phosphorus using co-kriging techniques. A case study of acid soils in Eastern Croatia. Archives of Agronomy and Soil Science. 63(13):1852-1863. https://doi.org/10.1080/03650340.2017.1311013.

Börjesson, G.; Bolinder, M. A.; Kirchmann, H. and Kätterer, T. 2018. Organic carbon stocks in topsoil and subsoil in long-term ley and cereal monoculture rotations. Biology and Fertility of Soils. 54(4):549-558. https://doi.org/10.1007/s00374-018-1281-x.

Chacón, P.; Lorenz, K.; Lal, R.; Calhoun, F. G. and Fausey, N. 2015. Soil organic carbon in some land uses of Costa Rica. Acta Agriculturae Scandinavica Section B: soil and Plant Science. 65(4):310-320. https://doi.org/10.1080/09064710.2015.1008563.

Chatterjee, N.; Nair, P. K.; Nair, V. D.; Bhattacharjeem, A.; Virginio-Filho, E. M.; Muschler, R. G. and Noponen, M. R. A. 2020. Do coffee agroforestry systems always improve soil carbon stocks deeper in the soil? a case study from Turrialba, Costa Rica. Forests. 11(1):1-49. https://doi.org/10.3390/f11010049.

Chen, X.; Hu, Y.; Xia, Y.; Zheng, S. ; Ma, C.; Rui, Y.; He, H.; Huang, D.; Zhang, Z.; Ge, T.; Wu, J.; Guggenberger, G.; Kuzyakov, Y. and Su, Y. 2021. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology. 27(11):2478-2490. https://doi.org/10.1111/gcb.15595.

Davis, M.; Alves, B. J.; Karlen, D. L.; Kline, K. L.; Galdos, M. and Abulebdeh, D. 2018. Review of soil organic carbon measurement protocols: a US and Brazil comparison and recommendation. Sustainability. 10(1):1-20. https://doi.org/10.3390/su10010053.

FAO. 2019. Food and Agriculture Organization of the United Nations. Recarbonization of global soils. A dynamic response to offset global emissions. http://www.fao.org/3/i7235en/I7235EN.pdf. 1-8 pp.

FAO. 2020. Food and Agriculture Organization of the United Nations. A protocol for measurement, monitoring, reporting and verification of soil organic carbon in agricultural landscapes GSOC-MRV Protocol. Rome. https://doi.org/10.4060/cb0509en.

FAO. 2022. Food and Agriculture Organization of the United Nations. Global Soil Organic Carbon Sequestration Potential Map GSOCseq v.1.1. Technical report. Rome. https://doi.org/10.4060/cb9002en.

FAO. 2024. Food and Agriculture Organization of the United Nations. Cómo la iniciativa RECSOIL impulsa el cambio en Costa Rica. FAO Global Soil Partnership. https://www.fao.org/global-soil-partnership/resources/highlights/detail/es/c/1680245/.

Gregory, A. S.; Dungait, J. A. J.; Watts, C. W.; Bol, R.; Dixon, E. R.; White, R. P. and Whitmore, A. P. 2016. Long-term management changes topsoil and subsoil organic carbon and nitrogen dynamics in a temperate agricultural system. European Journal of Soil Science. 67(4):421-430. https://doi.org/10.1111/ejss.12359.

Jandl, R.; Rodeghiero, M.; Martinez, C.; Cotrufo, M. F.; Bampa, F.; Wesemael, B.; Harrison, R. B.; Guerrini, I. A.; Richter, D. D.; Rustad, L.; Lorenz, K.; Chabbi, A. and Miglietta, F. 2014. Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment. 468-469:376-383 pp. Doi:10.1016/j.scitotenv.2013.08.026.

Lal, R. 2016. Beyond COP21: potential and challenges of the ‘4 per Thousand’ initiative. Journal of Soil and Water Conservation. 71. 20A-25A pp. https://doi.org/10.2489/jswc.71.1.20A.

Lawrence, P. G.; Roper, W.; Morris, T. F. and Guillard, K. 2020. Guiding soil sampling strategies using classical and spatial statistics: a review. Agronomy Journal. 112(1):493-510. https://doi.org/10.1002/agj2.20048.

Li, C.; Wang, G.; Han, Q.; Sun, J.; Ning, H. and Feng, D. 2023. Soil moisture and water-nitrogen synergy dominate the change of soil carbon stock in farmland. Agricultural Water Management. 287(1):108-424. https://doi.org/10.1016/j.agwat.2023.108424.

Li, Q.; Li, A.; Dai, T.; Fan, Z.; Luo, Y.; Li, S.; Yuan, D.; Zhao, B.; Tao, Q.; Wang, C.; Li, B.; Gao, X.; Li, Y.; Li, H. and Wilson, J. P. 2020. Depth-dependent soil organic carbon dynamics of croplands across the Chengdu plain of China from the 1980s to the 2010s. Global Change Biology. 26(7):4134-4146. https://doi.org/10.1111/gcb.15110.

Matus, F. J. 2021.Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis. Sci. Rep. 11(6438):1-17. https://doi.org/10.1038/s41598-021-84821-6.

Nayak, A. K.; Rahman, M. M.; Naidu, R.; Dhal, B.; Swain, C. K.; Nayak, A. D.; Tripathi, R.; Shahid, M.; Islam, M. R. and Pathak, H. 2019. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: a review. Science of the Total Environment. 665:890-912. https://doi.org/10.1016/j.scitotenv.2019.02.125.

Oliveira, D. D.; Paustian, K.; Davies, C. A.; Cherubin, M. R.; Franco, A. L.; Cerri, C. C. and Cerri, C. E. 2016. Soil carbon changes in areas undergoing expansion of sugarcane into pastures in south-central Brazil. Agriculture, Ecosystems and Environment. 228:38-48. https://doi.org/10.1016/j.agee.2016.05.005.

Ojeda, J. J.; Caviglia, O. P. and Agnusdei, M. G. 2018. Vertical distribution of root biomass and soil carbon stocks in forage cropping systems. Plant and Soil. 423(1-2):175-191. https://doi.org/10.1007/s11104-017-3502-8.

RStudio Team. 2020. RStudio: integrated development environment for R (Version 1.3.1093) [Computer software]. RStudio, PBC. https://www.rstudio.com/.

Sherman, L. A. and Brye, K. R. 2019. Soil chemical property changes in response to long‐term pineapple cultivation in Costa Rica. Agrosystems, Geosciences and Environment. 2(1):1-9. https://doi.org/10.2134/age2019.07.0052.

Schloeder, C. A.; Zimmerman, N. E. and Jacobs, M. J. 2001. Comparison of methods for interpolating soil properties using limited data. Soil Science Society of America Journal. 65(2):470-479. https://doi.org/10.2136/sssaj2001.652470x.

Smith, P.; Soussana, J.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D. P.; Batjes, N. H.; Egmond, F.; McNeill, S.; Kuhnert, M.; Arias‐Navarro, C.; Olesen, J. E.; Chirinda, N.; Fornara, D.; Wollenberg, E.; Álvaro‐Fuentes, J.; Sanz‐Cobena, A. and Klumpp, K. 2020. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology. 26(1):219-241. https://doi.org/10.1111/gcb.14815

Tautges, N. E.; Chiartas, J. L.; Gaudin, A. C. M.; O’Geen, A. T.; Herrera, I. and Scow, K. M. 2019. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Global Change Biology. 25(11):3753-3766. https://doi.org/10.1111/gcb.14762.

Usowicz, B. and Lipiec, J. 2021. Spatial variability of saturated hydraulic conductivity and its linkswith other soil properties at the regional scale. Scientific Reports. 11(1):1-12.https://doi.org/10.1038/s41598-021-86862-3.

Valderrama-López, C. F.; Castillo-Vargas, J. A.; Torres-Romero, J. C.; Guzmán-Lenis, A. R.; Forero-Ausique, V. F.; Duque-Chaves, C. M.; Sepúlveda-Casadiego, Y. A.; Montenegro-Gómez, S. P. 2018. Capítulo 6. Secuestro y almacenamiento de carbono: capturas de carbono por pagos de servicios ambientales. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente. Universidad Nacional Abierta y a Distancia. 106-117 pp.

Wen, W.; Wang, Y.; Yang, L.; Liang, D.; Chen, L. D.; Liu, J. and Zhu, A. X. 2015. Mapping soil organic carbon using auxiliary environmental covariates in a typical watershed in the loess plateau of China: a comparative study based on three kriging methods and a soil land inference model (SoLIM). Environ Earth Sci. 73:239-251. https://doi.org/10.1007/s12665-014-3518-9.

Wu, H.; Zheng, X. Zhou, L. and Meng, Y. 2024. Spatial autocorrelation and driving factors of carbon emission density of crop production in China. Environ Sci Pollut Res. 31:27172-27191. https://doi.org/10.1007/s11356-024-32908-8.

Xu, S. Q.; Zhang, M. Y.; Zhang, H. L.; Chen, F.; Yang, G. L. and Xiao, X. P. 2013. Soil organic carbon stocks as affected by tillage systems in a double-cropped rice field. Pedosphere. 23(5):696-704. https://doi.org/10.1016/S1002-0160(13)60062-4.

Yu, H.; Zha, T.; Zhang, X. and Ma, L. 2019. Vertical distribution and influencing factors of soil organic carbon in the loess plateau, China. Science of The Total Environment. 693:133632. https://doi.org/10.1016/j.scitotenv.2019.133632.

Zhong, Z.; Chen, Z.; Xu, Y.; Ren, C.; Yang, G.; Han, X.; Ren, G. and Feng, Y. 2018. Relationship between soil organic carbon stocks and clay content under different climatic conditions in Central China. Forests. 9(10):1-14. https://doi.org/10.3390/f9100598.

Zomer, R. J.; Bossio, D. A.; Sommer, R. and Verchot, L. V. 2017. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports. 7(15554):1-8. https://doi.org/10.1038/s41598-017-15794-8.

Published

2025-07-23

How to Cite

Aguirre-Elizondo, Roberto, Mayela María Monge Muñoz, Ana Gabriela Pérez-Castillo, Melvin Alpízar-Marín, Helber Guillen-Arroyo, and Cristina Chinchilla-Soto. 2025. “Carbon Variability in the Soil of a Rice Field in Costa Rica”. Revista Mexicana De Ciencias Agrícolas 16 (5). México, ME:e3664. https://doi.org/10.29312/remexca.v16i5.3664.

Issue

Section

Articles