Chemical compounds of Tagetes lucida essential oil and effects against Botrytis cinerea

Authors

  • Miguel Ángel Ruíz-González Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Estado de México, México. CP. 56230
  • Roney Solano-Vidal Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Estado de México, México. CP. 56230
  • Ernestina Valadez-Moctezuma Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Estado de México, México. CP. 56230
  • Miguel Ángel Serrato-Cruz Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Estado de México, México. CP. 56230

DOI:

https://doi.org/10.29312/remexca.v16i3.3613

Keywords:

Tagetes lucida, B. cinerea, essential oil

Abstract

The environment influences the chemical composition of plant essential oil and its biological effect. The purpose of the study was to describe the chemical profile of Tagetes lucida essential oil and to evaluate the in vitro biological effect against B. cinerea. The study was conducted in Texcoco, Mexico in October 2021. Essential oil was obtained from flowering plants by hydrodistillation; the identification of chemical compounds was carried out using the GC-MS technique. The in vitro bioassay employed the method of poisoned agar and mycelium of B. cinerea of three days of growth. Twelve treatments were evaluated: essential oil 0.1, 0.5, 1, and 2%, Tween 20 at 0.1, 0.3, 0.5, 0.8, 1 and 2%, commercial fungicide, and absolute control (only with sterile double-distilled water). Every 24 h, radial growth of the fungus was measured with a digital vernier and growth rate and inhibition of mycelial growth were estimated. Thirty-one chemical compounds were identified, (1S)-(-)-β-Pinene (36.4%), 1, 3, 5, 7-Cyclooctatetraene (12.7%), eucalyptol (10.6%), and o-Cymene (6.1%). The concentrations of 0.1, 0.5, 1 and 2% inhibited the mycelial growth and sporulation of B. cinerea. The commercial fungicide and the 2% concentration totally inhibited the growth of the fungus. Tween 20 also inhibited mycelial growth. The LC50 was 0.06% and the LC95 was 1.69%. The abundance of terpenes in the essential oil of T. lucida showed a fungicidal effect against B. cinerea. The surfactant had minor effects.

Downloads

Download data is not yet available.

References

Acero-Godoy, J.; Guzmán-Hernández, T. y Muñoz-Ruíz, C. 2019. Revisión documental de uso de los aceites esenciales obtenidos de Lippia alba (Verbenaceae), como alternativa antibacteriana y antifúngica. Tecnología en Marcha. 32(1):3-11. Doi.org/10.8845/tm.v32.i1.4114.

Barajas, P. J. S.; Montes-Belmont, R.; Castrejón, F. A.; Flores-Moctezuma, H. E. y Serrato, C. M. A. 2011. Propiedades antifúngicas en especies del género Tagetes. Scientia Fungorum. 3(34):85-91.

Bicchi, C.; Fresia, M.; Rubiolo, P.; Monti, D.; Franz, C. and Goehler, I. 1997. Constituents of Tagetes lucida Cav. ssp. lucida essential oil. Flavour and Fragrance Journal. 12(1):47-52. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-1026%28199701%2912%3A1%3C47%3A%3AAID-FFJ610%3E3.0.CO%3B2-7.

Castillo, M. L. E. 2007. Introducción al SAS para Windows. Universidad Autónoma Chapingo (UACH). 3ra. Ed. 295 p.

Céspedes C. L.; Avila, J. G.; Martínez, A.; Serrato, B.; Calderón-Mugica, J. C. and Salgado-Garciglia, R. 2006. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). Journal of Agricultural and Food Chemistry. 54(10):3521-3527. Doi.org/10.1021/jf053071w.

Daferera, D. J.; Ziogas, B. N. and Polissiou, M. G. 2000. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. Journal of Agricultural and Food Chemistry. 48(6):2576-2581. Doi.org/10.1021/jf990835x.

Dikshit, A. and Husain, A. 1984. Antifungal action of some essential oils against animal pathogens. Fitoterapia LV. 171-176 pp.

https://www.semanticscholar.org/paper/Antifungal-action-of-some-essential-oils-against-Dikshit-Husain/3f8a7faddccfe278ac5b8077f2b825ab0f07dbb6.

Finney, D. J. 1971. Probit analysis. Third edition. Cambridge University Press. Cambridge. 333 p.

Gómez-López, A.; Aberkane, A.; Petrikkou, E.; Mellado, E.; Rodríguez-Tudela, J. L. and Cuenca-Estrella, M. 2005. Analysis of the influence of concentration, inoculum size, assay medium, and reading time on susceptibility testing of Aspergillus spp. Journal of Clinical Microbiology. 43(3):1251-1255. Doi.org/10.1128/jcm.43.3.1251-1255.2005.

Gutiérrez, G. Y.; Scull, L. R.; García, S. G. y Montes, A. A. 2018. Evaluación farmacognóstica, fitoquímica y biológica de un extracto hidroalcohólico de Tagetes lucida Cavanilles. Revista Cubana de Plantas Medicinales. 23(2). https://revplantasmedicinales.sld.cu/index.php/pla/article/view/669/308.

Helal, G. A.; Sarhan, M. M.; Shahla, A. N. K. A. and El-Khair, E. K. A. 2006. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain. Journal Of Basic Microbiology. 46(6):456-469. Doi.org/10.1002/jobm.200510106.

Inouye, S.; Watanabe, M.; Nishiyama, Y.; Takeo, K.; Akao, M. and Yamaguchi, H. 1998. Antisporulating and respiration-inhibitory effects of essential oils on filamentous fungi. Mycoses. 41(9-10):403-10. Doi.org/10.1111/j.1439-0507.1998.tb00361.x.

Kagezi, G. H.; Kucel, P.; Olal, S.; Pinard, F.; Seruyange, J.; Musoli, P. and Kangire, A. 2015. In vitro inhibitory effect of selected fungicides on mycelial growth of ambrosia fungus associated with the black coffee twig borer, Xylosandrus compactus Eichhoff (Coleoptera: curculionidae) in Uganda. African Journal of Agricultural Research. 10(23):2322-2328. Doi.org/10.5897/ajar12.1705. https://academicjournals.org/journal/AJAR/article-full-text/D7529FA53326.

Karalija, E.; Dahija, S.; Tarkowski, P. and Ćavar-Zeljkovic, S. 2022. Influence of climate-related environmental stresses on economically important essential oils of mediterranean Salvia sp. Frontiers in Plant Science. 13:864807. Doi: 10.3389/fpls.2022.864807. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.864807/full.

Köppen, W. 1948. Climatología: con un estudio de los climas de la tierra. Fondo de Cultura Económica (FCE). México, DF. 479 p. https://books.google.com.mx/books/about/Climatolog%C3%ADa.html?id=kA-IGwAACAAJ&redir-esc=y.

López, L. E.; Peña M. G. O.; Colinas L. M. T.; Diaz, C. F. y Serrato, C. M. A. 2018. Fungistasis del aceite esencial extraído de una población de Tagetes lucida de Hidalgo, México. Revista Mexicana de Ciencias Agrícolas. 9(2):329-341. Doi.org/10.29312/remexca.v9i2.1075. https://www.scielo.org.mx/scielo.php?script=sci-arttext&pid=S2007-09342018000200329.

Mwamburi, L. A.; Laing, M. D. and Miller, R. M. 2015. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Brazilian Journal of Microbiology. 46(1):67-74. Doi.org/10.1590/s1517-838246120131077. https://pmc.ncbi.nlm.nih.gov/articles/PMC4512050/.

Omer, E. A.; Hendawy, S. F.; El-Deen, A. M. N.; Zaki, F. N.; Abd-Elgawad, M. M.; Kandeel, A. M. and Ismail, R.F. 2015. Some biological activities of Tagetes lucida plant cultivated in Egypt. Advances in Environmental Biology. 9(2):82-88. https://www.researchgate.net/publication/309111820-Some-biological-activities-of-Tagetes-lucida-plant-cultivated-in-Egypt.

Rammanee, K. and Hongpattarakere, T. 2011. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food and Bioprocess Technology. 4:1050-1059. Doi.org/10.1007/s11947-010-0507-1. https://link.springer.com/article/10.1007/s11947-010-0507-1#citeas.

Rasooli, I.; Rezaei, M. B. and Allameh, A. 2006. Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Control. 17(5):359-364. Doi.org/10.1016/j.foodcont.2004.12.002. https://www.sciencedirect.com/science/article/abs/pii/S0956713505000162.

Regalado, E. L.; Fernández, M. D.; Pino, J. A.; Mendiola, J. and Echemendia, O. A. 2011. Chemical composition and biological properties of the leaf essential oil of Tagetes lucida Cav. from Cuba. Journal of Essential Oil Research. 23(5):63-67. Doi.org/10.1080/10412905.2011.9700485. https://www.tandfonline.com/doi/abs/10.1080/10412905.2011.9700485.

Rodríguez, A. M.; Alcaraz, M. L. y Real, C. S. M. 2012. Procedimientos para la extracción de aceites esenciales en plantas aromáticas. SAGARPA-CONACYT. México, DF. 47 p.

SAS Institute Inc. 2023. SAS® OnDemand for Academics. https://www.sas.com/es-mx/software/on-demand-for-academics.html.

Serrato, C. M. A. 2014. El recurso genético cempoalxóchitl (Tagetes spp.) de México (Diagnóstico). México, DF. 185 p.

Sinclair, C. G. and Cantero, D. 1989. Fermentation modelling. In: fermentation a practical approach. McNeil, B. L. and Harvey, M. (Eds.). IRL Press, New York. 65-112 pp. https://cienciasagricolas.inifap.gob.mx/index.php/agricolas/article/view/2077/3209.

Soylu, E. M.; Kurt, Ş. and Soylu, S. 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology. 143(3):183-189. Doi.org/10.1016/j.ijfoodmicro.2010.08.015. https://www.sciencedirect.com/science/article/abs/pii/S0168160510004757.

Tančinová, D.; Mašková, Z.; Mendelová, A.; Foltinová, D.; Barboráková, Z. and Medo, J. 2022. Antifungal activities of essential oils in vapor phase against Botrytis cinerea and their potential to control postharvest strawberry gray mold. Foods. 11(19):2945. Doi.org/10.3390/foods11192945. https://www.mdpi.com/2304-8158/11/19/2945.

Torres-Martínez, R.; Moreno-León, A.; García-Rodríguez, Y. M.; Hernández-Delgado, T.; Delgado-Lamas, G. and Espinosa-García, F. J. 2022. Tagetes lucida Cav. essential oil and the mixture of its main compounds are antibacterial and modulate antibiotic resistance in multi-resistant pathogenic bacteria. Letters in Applied Microbiology. 75(2):210-223. Doi.org/10.1111/lam.1372. https://pubmed.ncbi.nlm.nih.gov/35419861/.

Toju, H.; Tanabe, A. S.; Yamamoto, S. and Sato, H. 2012. High-Coverage ITS primers for the DNA-Based identification of Ascomycetes and Basidiomycetes in environmental samples. Plos One. 7(7):1-11. Doi.org/10.1371/journal.pone.0040863. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040863.

Turner, B. L. 1996. The comps of Mexico: A systematic account of the family Asteraceae, vol. 6. Tageteae and Anthemideae. Phytologia Memoirs. Texensis Publishing. Gruver, Texas, USA. 93 p. https://books.google.com.mx/books/about/The-Comps-of-Mexico-Tageteae-and-Anthemi.html?id=6gZHAAAAYAAJ&redir-esc=y.

Valkovszki, N. J.; Szalóki, T.; Székely, Á.; Kun, Á.; Kolozsvári, I.; Zima, I. S.; Tavaszi-Sárosi, S. and Jancsó, M. 2023. Influence of soil types on the morphology, yield, and essential oil composition of common sage (Salvia officinalis L.). Horticulturae. 9(9):1037. Doi.org/10.3390/horticulturae9091037. https://www.mdpi.com/2311-7524/9/9/1037.

Zarate-Escobedo, J.; Castañeda-González, E. L.; Cuevas-Sánchez, J. A.; Carrillo-Fonseca, C. L.; Ortiz-Torres, C.; Ibarra-Estrada, E. y Serrato-Cruz, M. A. 2018. Aceite esencial de algunas poblaciones de Tagetes lucida Cav. de las regiones norte y sur del Estado de México. Revista Fitotecnia Mexicana. 41(2):199-209. Doi.org/10.35196/rfm.2018.2.199-209. https://www.scielo.org.mx/scielo.php?script=sci-arttext&pid=S0187-73802018000200199.

Zhao, J.; Quinto, M.; Zakia, F. and Li, D. 2023. Microextraction of essential oils: a review. Journal of Chromatography A. 1708:464357. Doi.org/10.1016/j.chroma.2023.464357. https://www.sciencedirect.com/science/article/abs/pii/S0021967323005824.

Published

2025-05-07

How to Cite

Ruíz-González, Miguel Ángel, Roney Solano-Vidal, Ernestina Valadez-Moctezuma, and Miguel Ángel Serrato-Cruz. 2025. “Chemical Compounds of Tagetes Lucida Essential Oil and Effects Against Botrytis Cinerea”. Revista Mexicana De Ciencias Agrícolas 16 (3). México, ME:e3613. https://doi.org/10.29312/remexca.v16i3.3613.

Issue

Section

Articles

Most read articles by the same author(s)