Potential fungicidal effect of root extracts of Cucurbita foetidissima (Kunth) against Fusarium sp.

Authors

  • Rosalba Troncoso-Rojas Coordinación de Tecnología de Alimentos de Origen Vegetal. -Centro de Investigación en Alimentación y Desarrollo, AC. Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, México. CP. 83304. Tel. 662 2892400
  • Alonso Abdiel Martínez-Garate Coordinación de Tecnología de Alimentos de Origen Vegetal. -Centro de Investigación en Alimentación y Desarrollo, AC. Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, México. CP. 83304. Tel. 662 2892400
  • Alberto Sánchez-Estrada Coordinación de Tecnología de Alimentos de Origen Vegetal. -Centro de Investigación en Alimentación y Desarrollo, AC. Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, México. CP. 83304. Tel. 662 2892400
  • Ana Isabel Valenzuela-Quintanar Coordinación de Ciencia de los Alimentos-Centro de Investigación en Alimentación y Desarrollo, AC. Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, México. CP. 83304. Tel. 662 2892400.
  • Tania Elisa González-Soto Coordinación de Tecnología de Alimentos de Origen Vegetal. -Centro de Investigación en Alimentación y Desarrollo, AC. Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, México. CP. 83304. Tel. 662 2892400

DOI:

https://doi.org/10.29312/remexca.v16i2.3523

Keywords:

cucurbits, fusariosis, secondary metabolites, wild squash

Abstract

The genus Fusarium affects a wide diversity of horticultural crops, generating significant economic losses. These fungi are capable of infecting plants during their development and even after harvest. The use of bioactive plant extracts is an environmentally friendly, non-harmful, and low-cost control strategy. Plant-based compounds have shown promise in the control of fungal diseases. Cucurbita foetidissima is a cucurbit with a high content of secondary metabolites present in its root with fungicidal power. The present work was conducted from 2017 to 2019 and it evaluated the antifungal effect of root extracts of C. foetidissima against different Fusarium species under in vitro conditions. Root ethanolic and methanolic extracts of C. foetidissima were obtained. The metabolites: phenols, flavonoids, terpenoids, and saponins were quantified. The antifungal capacity of the extracts on the growth of Fusarium oxysporum, F. equiseti, and F. solani was evaluated in vitro. Methanolic extracts had a higher concentration of phenols, terpenoids, and saponins compared to ethanolic extracts; the latter had a higher concentration of flavonoids. The ethanolic extract achieved a greater antifungal effect, inhibiting between 60 and 80% of the growth of the three Fusarium species. The root ethanolic extract of C. foetidissima has a moderate fungistatic capacity to inhibit the in vitro mycelial growth of different Fusarium species, suggesting the potential of its use to delay or attenuate the onset of symptoms associated with fusariosis.

Downloads

Download data is not yet available.

References

Al Aboody, M. S. A. and Mickymaray, S. 2020. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics. 26(2):1-42. Doi:10.3390/antibiotics9020045.

Ammar, M. I.; Gomah, E. N. and Abul, H. H. M. 2013. Antifungal activity of prenylated flavonoids isolated from Tephrosia apollinea L. against four phytopathogenic fungi. Crop Protection. 49(1):21-25. Doi.org/10.1016/j.cropro.2013.02.012.

Apodaca-Sánchez, M. Á.; Zavaleta-Mejía, E.; Osada-Kawasoe, S. y García-Espinoza, R. 2004. Hospedantes asintomáticos de Fusarium oxysporum Schlechtend. f. sp. radicis-lycopersici. Revista Mexicana de Fitopatología. 22(1):7-13.

Arif, T.; Bhosale, J. D.; Kumar, N.; Mandal, T. K.; Bendre, R. S.; Lavekar, G. S. and Dabur, R. 2009. Natural products antifungal agents derived from plants. Journal of Asian Natural Products Research. 11(7):621-638. Doi:10.1080/10286020902942350.

Chacón, C.; Miranda-Granados, J.; Ruiz-Lau, N.; Lagunas-Rivera, S.; Ruíz-Valdiviezo, V. M. and Gutiérrez-Miceli, F. A. 2021. In vitro antifungal activity and chemical composition of Piper auritum Kunth essential oil against Fusarium oxysporum and Fusarium equiseti. Agronomy. 11(6):1-13. Doi:10.3390/ agronomy11061098.

Chapagain, B. P.; Wiesman, Z. and Tsror, L. L. 2007. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Industrial Crops and Products. 26(2):109-115. Doi.org/10.1016/j.indcrop.2007.02.005.

DGSV-CNRF. 2020. Podredumbre de raíces por Fusarium spp. (Hypocreales: Nectriaceae) en maíz. SADER-SENASICA. Dirección General de Sanidad Vegetal-Centro Nacional de Referencia Fitosanitaria. Ficha técnica. 15 p. Tecámac, Estado de México. https://www.gob.mx/cms/uploads/attachment/file/600884/Podredumbre-de-ra-ces.pdf

Ekwomadu, T. I. and Mwanza, M. 2023. Fusarium fungi pathogens, identification, adverse effects, disease management, and global food security: a review of the latest research, Agriculture. 13(9):1-20. Doi.org/10.3390/agriculture13091810.

García-Granados, R. U.; Cruz-Sosa, F.; Alarcón-Aguilar, F. J.; Nieto-Trujillo, A. y Gallegos-Martínez, M. E. 2019. Análisis fitoquímico cualitativo de los extractos acuosos de Thalassia testudinum Banks ex Köning et Sims de la localidad de Champotón, Campeche, México, durante el ciclo anual 2016-2017. Polibotánica. 1(48):151-168. Doi:10.18387/polibotanica.48.12.

Ghorai, N. C. 2012. Terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. Protocol Exchange. 1(10):1-5. Doi:10.1038/protex.2012.055.

Gómez, G. A.; Rangel, G. J. M.; Morales, F. F.; Aquino, P. G.; Santana, G. M. A. y Silos, E. H. 2019. Diagnóstico de poblaciones silvestres de calabacilla loca en el Altiplano Central de México. Revista Mexicana de Ciencias Agrícolas. 10(7):1517-1528. doi.org/10.29312/remexca.v10i7.1693.

Gupta, S. M. and Kumar, K. 2017. In vitro antioxidant and anti-Rhizopus activity of methanolic seed extract of Camelina sativa L. Defense Life Science Journal. 2(1):59-64. Doi:10.14429/dlsj.2.10110.

Helaly, F. M.; Soliman, H. S.; Soheir, A. D. and Ahmed, A. A. 2001. Controlled release of migration of molluscicidal saponin from different types of polymers containing Calendula officinalis. Journal of the Polymer Processing Institute. 20(4):305-311. Doi.org/10.1002/adv.10005.

Isidro-Requejo, L. M.; Márquez-Ríos, E.; Toro-Sánchez, C. L.; Ruiz-Cruz, S.; Valero-Garrido, D. and Suárez-Jiménez, G. M. 2023. Tomato plant extract (Lycopersicon esculentum) obtained from agroindustrial byproducts and its antifungal activity against Fusarium spp. Frontiers in Sustainable Food Systems. 7(11):1-8. Doi:10.3389/fsufs.2023.1323489.

Kaushik, U.; Aeri, V. and Mir, S. R. 2015. Cucurbitacins an insight into medicinal leads from nature. Pharmacognosy reviews. 9(17):12-18. Doi:10.4103/0973-7847.156314.

Kiiker, R.; Juurik, M. and Heick, T. M. 2021. Changes in DMI, SDHI and QoI Fungicide sensitivity in the Estonian Zymoseptoria tritici population between 2019 and 2020. Microorganisms. 12-9(4):1-15. Doi:10.3390/microorganisms9040814.

Leslie, J. F. and Summerell, B. A. 2008. The Fusarium laboratory manual. Second Ed. Wiley Blackwell Publishing. Ames, IA, USA. 387 p.

Macías, S. K. L.; Juárez, F. B. I.; Cárdenas, O. N. C.; Aguirre, R. J. R. y Jasso, P. Y. 2009. Evaluación de plantas tradicionalmente utilizadas en la desinfección de heridas. Revista Mexicana de Ciencias Farmacéuticas. 40(2):5-10.

Mahgoub, S. A.; Qattan, S. Y. A.; Salem, S. S.; Abdelbasit, H. M.; Raafat, M.; Ashkan, M. F.; Al-Quwaie, D. A.; Motwali, E. A.; Alqahtani, F. S. and Abd El-Fattah, H. I. 2023. Characterization and biodegradation of phenol by Pseudomonas aeruginosa and Klebsiella variicola strains isolated from sewage sludge and their effect on soybean seeds germination. Molecules. 26-28(3):1-19. Doi:10.3390/molecules28031203.

Mehmood, A.; Javid, S.; Khan, M. F.; Ahmad, K. S. and Mustafa, A. 2022. In vitro total phenolics, total flavonoids, antioxidants and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chemistry. 16(1):1-10. Doi:10.1186/s13065-022-00858-2.

Mejía-Morales, C.; Rodríguez-Macias, R.; Salcedo-Pérez, E.; Zamora-Natera, J. F.; Rodríguez-Zaragoza, F. A.; Molina-Torres, J.; Délano-Frier, J. P. and Zañudo-Hernández, J. 2021. Contrasting metabolic fingerprints and seed protein profiles of Cucurbita foetidissima and C. radicans fruits from federal plants sampled in Central Mexico. Plants. 10(11):1-22. Doi:10.3390/plants10112451.

Mohamed, A.; Yousef, S.; Nasser, W. S.; Osman, T. A.; Knebel, A.; Sánchez, E. P. V. and Hashem, T. 2020. Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV. Environmental Science Europe. 32(12):1-8. Doi.org/10.1186/s12302-020-00436-0.

Mukherjee, P.K.; Singha, S.; Kar, A.; Chand, J.; Bonerjee, S.; Dasgupta, B.; Haldar, P. H. and Sharma, N. 2022. Therapeutic importance of Cucurbitaceae: a medicinally important family. Journal of Ethnopharmacology. 282(10):1-27. Doi.org/10.1016/j.jep.2021.114599.

Pérez-Delgado, O. y Vallejos-Campos, E. C. 2019. Actividad antifúngica in vitro del extracto crudo acuoso de Rosmarinus officinalis contra Candida albicans. Journal of the Selva Andina Research Society. 10(1):1-9. Doi:10.36610/j.jsars.2019.100100045.

Ramírez, P. G.; Ramírez, D. G.; Zavaleta-Mejía, E.; Ocampo, S. A.; Díaz, C. N. and Martínez, R. I. R. 2020. Extracts of Stevia rebaudiana against Fusarium oxysporum associated with tomato cultivation. Scientia Horticulturae. 259(9):1-6. Doi.org/10.1016/j.scienta.2019.108683.

Rangel-Guerrero, J. M.; Flores-Benitez, S.; Cadena-Iñiguez, J.; Morales-Flores, F. J. and Trejo-Téllez, B. I. 2018. Extracts of Cucurbita foetidissima (Kunth) fruits inhibit the growth of phytopathogens of agricultural interest. Agroproductividad. 11(10):107-115. Doi.org/10.32854/agrop.v11i10.1253.

Singleton, V. L.; Orthofer, R. y Lamuela-Raventós, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 299(1):152-178. Doi.org/10.1016/S0076-6879(99)99017-1.

Tao, H.; Bao, Z.; Jin, C.; Miao, W.; Fu, Z. and Jin, Y. 2020. Toxic effects and mechanisms of three commonly used fungicides on the human colon adenocarcinoma cell line Caco-2. Environmental Pollution. 263(4):1-11. Doi.org/10.1016/j.envpol.2020.114660.

Tousson, T. A. and Nelson, P. E. 1976. Fusarium. A pictorial guide to the identification of Fusarium species according to the taxonomic system of Snyder and Hansen. 2a Ed. University Park y Londres. The Pennsylvania State University Press. 43 p.

Treviño, N. J. F.; Rodríguez, G. R. G.; Verde, S. M. J.; Morales, R. M. E.; Garza, P. R. A.; Rivas, M. C. y Oranday, C. A. 2012. Actividad antifúngica de Stenocereus pruinosus y Echinocereus stramineus. Revista Mexicana de Ciencias Farmacéuticas. 43(1):42-48.

Zhishen, J.; Mengcheng, T. and Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64(4):555-559. Doi.org/10.1016/S0308-8146(98)00102-2.

Zhou, X.; Guo, H.; Zhang, L.; Yang, L.; Wei, Z.; Zhang, X. and Niu, Y. 2023. Crude saponins from Chenopodium quinoa Willd. Reduce Fusarium wilt infection in tomato seedlings. Horticulturae. 9(12):1-12. Doi.org/10.3390/horticulturae9121340.

Published

2025-04-13

How to Cite

Troncoso-Rojas, Rosalba, Alonso Abdiel Martínez-Gárate, Alberto Sánchez-Estrada, Ana Isabel Valenzuela-Quintanar, and Tania Elisa González-Soto. 2025. “Potential Fungicidal Effect of Root Extracts of Cucurbita Foetidissima (Kunth) Against Fusarium Sp”. Revista Mexicana De Ciencias Agrícolas 16 (2). México, ME:e3523. https://doi.org/10.29312/remexca.v16i2.3523.

Issue

Section

Articles