Conidial reproduction of Trichoderma asperelloides in culture media and organic substrates

Authors

  • Ángel R. Ceballos-Chávez Facultad de Agricultura del Valle del Fuerte-Universidad Autónoma de Sinaloa. Av. Japaraqui y Calle 16 S/N, Juan José Ríos, Sinaloa, México. CP. 81110
  • Blanca E. López-Valenzuela Facultad de Agricultura del Valle del Fuerte-Universidad Autónoma de Sinaloa. Av. Japaraqui y Calle 16 S/N, Juan José Ríos, Sinaloa, México. CP. 81110
  • Fernando A. Valenzuela- Escoboza Facultad de Agricultura del Valle del Fuerte-Universidad Autónoma de Sinaloa. Av. Japaraqui y Calle 16 S/N, Juan José Ríos, Sinaloa, México. CP. 81110
  • Everardo López-Bautista Facultad de Agricultura del Valle del Fuerte-Universidad Autónoma de Sinaloa. Av. Japaraqui y Calle 16 S/N, Juan José Ríos, Sinaloa, México. CP. 81110
  • Hector A. Marquez-Lujan Departamento de Agricultura Sustentable y Protegida-Universidad Tecnológica de la Babícora. Carretera Soto Máynez-Gómez Farias, Col. Oscar Soto Máynez, Namiquipa, Chihuahua, México. CP. 31963
  • Leidy E. Chávez-García Departamento de Tecnología Ambiental-Universidad Tecnológica de la Tarahumara. Carretera Guachochi-Yoquivo km 1.5, Turuseachi, Guachohi, Chihuahua, México. CP. 33180

DOI:

https://doi.org/10.29312/remexca.v16i1.3510

Keywords:

antagonist, concentration, growth, strain

Abstract

The use of plant extracts for disease control in the framework of sustainable agriculture is a promising alternative due to their high effectiveness, low cost, and non-polluting nature of the environment. This work aimed to evaluate the biological activity of the conidial reproduction of Trichoderma asperelloides in culture media and organic substrates. Four strains of T. asperelloides were evaluated in solid substrates of rice, corn, sorghum, wheat, cornstarch powder and oats with peel of yellow peach native to the region; 250 g was added in polyethylene bags with an aliquot of 15 ml of distilled water, with the fungus and in glass jars, 10 mycelial discs of 0.5 cm diameter were added per strain during 45 days of incubation; in addition, the growth of T. asperelloides was tested in culture media of 5% V8 vegetable juice, potato dextrose agar, sabouraud dextrose agar, 5 g of PDA with wheat powder supplement, 5 g of potato dextrose agar with pine sawdust supplement, 5 g of sabouraud dextrose agar with eucalyptus powder supplement, bacteriological agar and MacConkey agar during seven days of growth; to obtain the conidia, serial dilutions were made with six replications per culture medium, with a concentration of 1 x 106. One hundred percent conidial reproduction was obtained in organic substrates and 87.5% mycelial growth in culture media and strain 3 was shown to have the highest conidial production.

Downloads

Download data is not yet available.

References

Ahmad, H. B.; Venugopal, K. S.; Rajagopal, K. R.; De Britto, S.; Nandini, B. P.; Pushpalatha, H. G.; Konappa, N. M.; Udayashankar, A. C.; Geetha, N. S. and Jogaiah, S. 2020. Green synthesis and characterization of zinc oxide nanoparticles using eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules. 10(3):e425. https://doi.org/10.3390/biom10030425.

Akter, S. M. and Sadia S. F. 2020. Evaluation of the biological efficacy of fungus and bacteria isolated from mushroom substrates against pathogenic fungi. International Journal of Environmental and Agriculture Research (IJOEAR). 6(3):38-40.

Alvarado, B. R.; Pompa, G. J. M.; Zúñiga, V. J. and Jiménez, C. M. 2019. Spatial analysis of phenotypic variables in a clonal orchard of Pinus arizonica Engelm. In northern Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente. 25(2):185-199. https://doi.org/10.5154/r.rchscfa.2018.11.086.

Antomarchi, O. Y.; Tamayo, R. E.; Guerra, B. J. L.; Siannah, M. M. D. y Barrera, A. A. L. 2023. Producción de hongo Trichoderma harzianum a-34 en sustratos sólidos alternativos. Revista Científica Arbitrada Multidisciplinaria. 5(1):259-267. http://editorialalema.org/index.php/pentaciencias/article/view/440/572.

Arévalo, E. D.; Cayotopa, J. J.; Olivera, D. E; Gárate, M. C.; Trigoso, E. B.; Costa, B. D. y Leon, T. B. 2017. Optimización de sustratos para la producción de conidias de Trichoderma harzianum por fermentación sólida en la region de San Martin, Perú. Revista de Investigaciones Altoandinas. Journal of High Andean Research. 19(2):135-144. https://doi.org/10.18271/ria.2017.272.

Bastidas, G. O. 2018. Conteo celular con hematócitometro (uso elemental del hematócitometro). Neubauer chamber cell counting. Celeromics. Nota técnica núm. 1. 6 p. https://xdoc.mx/documents/conteo-celular-con-hematocitometro-606bdf1d4e7c7.

Bevacqua, D. P.; Génard, M. W.; Lescourret, F. P.; Martinetti, D. P; Vercambre, G. L.; Valsesia, P. W. and Mirás-Avalos, J. M. 2019. Coupling epidemiological and tree growth models to control fungal diseases spread in fruit orchards. Scientific Reports. 9(1):e8519-1-8. https://doi.org/10.1038/s41598-019-44898-6.

Bhandari, P. S.; Pandey, K. R.; Joshi, Y. R. and Lamichhane, S. K. 2021. An overview of multifaceted role of Trichoderma spp. for sustainable agriculture. Archives of Agriculture and Environmental Science. 6(1):72-79. https://doi.org/10.26832/24566632.2021.0601010.

Cáceres, Y. H. y Galliani, P. C. L. 2020. Production of Trichoderma viride in local organic substrates of the Ica region Peru. Plant Pathol Microbiol. 11(490):1-7. Doi: 10.35248/2157-7471.20.11.490.

Camargo, P. Y.; Zambrano, M. G.; Ortega, C. M.; Gutierrez, M. D. J. and Yepes, E. J. A. 2021. Actividad antifúngica in vitro del aceite esencial de Swinglea glutinosa Merr sobre Colletotrichum sp. patógeno de mango (Mangifera indica L.). Revista Colombiana de Biotecnología. 23(1):62-71. https://doi.org/10.15446/rev.colomb.biote.v23n1.88025.

Cuenca, S. J. A.; Quevedo, G. J. N.; Tuz, G. I. G. and Chabla, C. J. E. 2022. Trichoderma spp: propagación, dosificación y aplicación en el cultivo de maíz (Zea mays L.). Ciencia y Agricultura. 19(3):32-44. https://doi.org/10.19053/01228420.v19.n3.2022.14692.

De Rezende, L. C.; De Andrade, C. A. L.; Costa, L. B.; De Almeida, H. V. B.; Silva, L. G.; Pinto, Z. V.; Morandi, M. A. B.; De Medeiros, F. H. V.; Mascarin, G. M. and Bettiol, W. 2020. Optimizing mass production of Trichoderma asperelloides by submerged liquid fermentation and its antagonism against Sclerotinia sclerotiorum. World Journal of Microbiology and Biotechnology. 36(8):113-127. https://doi.org/10.1007/s11274-020-02882-7.

Feijóo-Vivas, K.; Bermúdez-Puga, S. A.; Rebolledo, H.; Figueroa, J. M.; Zamora, P. y Naranjo-Briceño, L. 2021. Bioproductos desarrollados a partir de micelio de hongos: una nueva cultura material y su impacto en la transición hacia una economía sostenible. Bionatura. 6(1):1637-1652. https://doi.org/10.21931/rb/2021.06.01.29.

Fletcher, I. A. 2019. Effect of temperature and growth media on Mycelium growth of Pleurotus ostreatus and Ganoderma Lucidum strains. Cohesive Journal of Microbiology and Infectious Disease. 2(5):1-5. https://doi.org/10.31031/CJMI.2019.02.000549.

Gato, C. Y. 2010. Métodos de conservación y formulación de Trichoderma harzianum rifai. Revista de Fitosanidad. 14(3):189-195. https://www.redalyc.org/articulo.oa?id=209115199008.

Ipiales, J. J. P.; Pineda, I. J. A.; Barrigas, R. D. A.; Muñoz, P. F. A. y Pineda, S. C. A. 2021. Producción del hongo-moho (Trichoderma harzianum): una revisión. Revista de Biorrefinería. 4(4):1.-6. https://www.cebaecuador.org/wp-content/uploads/2022/01/14.pdf.

Jahan, J. T.; Sabinha, H. S.; Adhikary, S. K.; Sanzida, M. R. y Suraiya Y. S. 2013. Evaluation of the growth performance of Trichoderma harzianum (Rifai.) on different culture media. Journal of Agriculture and Veterinary Science. 3(4):44-50. http://www.iosrjournals.org/.

Kyei, K. S.; Dogbadze, E. S.; Tagoh, H. S. and Mwanza, E. B. 2020. Unorthodox ophthalmic preparations on the Ghanaian market: a potential risk for ocular and enteric infections. African Health Sciences. 20(1):515-523. https:// creativecommons.org/licenses/BY/4.0.

Liang, S. M.; Zheng, F. L.; Fathi-Abd, A. E.; Muthuramalingam, P.; Wu, Q. S. and Hashem, A. 2021. Spatial changes of arbuscular mycorrhizal fungi in peach and their correlation with soil properties. Saudi Journal of Biological Sciences. 28(11):6495-6499. https://doi.org/10.1016/j.sjbs.2021.07.024.

López-Martínez, T. Á.; Páramo Aguilera, L. A. y Delgado Silva, H. D. 2022. Reproducción masiva de hongos Trichodermas previamente identificados de suelos nicaragüenses en diferentes sustratos orgánicos. Nexo Revista Científica. 35(03):700-712. https://doi.org/10.5377/nexo.v35i03.15000.

Mulatu, A. U.; Alemu, T. M.; Megersa, N. G. and Vetukuri, R. R. 2021. Optimization of culture conditions and production of bio-fungicides from Trichoderma species under solid-state fermentation using mathematical modeling. Microorganisms 9(8):1675-1700. https://doi.org/10.3390/microorganisms9081675.

Porras, F. D.; Anchondo, P. C.; González, A. A.; Piñón M. M. A. and Anchondo, A. A. 2021. Diagnosis, technology transfer and technical support for the development of family production units in the municipality of Morelos, Chihuahua. Revista Biologica Agripecuaria Tuxpan. 9(2):62-71. https://doi.org/10.47808/revistabioagro.v9i2.363.

Perera, T. V. R. C.; Pakeerathan, K. P. and Nirosha, R. A. 2021. Eco-friendly management common lab contaminant Trichoderma spp. in oyster mushroom production using agrobased industry’s by-products. Proceedings of the 5th International Conference on Climate Change. 5(1):65-71 https://doi.org/10.17501/2513258X.2021.5111.

Rai, P. D.; Ranjan R. K. and Kumar, R. M. 2023. Evaluation of local solid and liquid substrates for growth and sporulation of Trichoderma asperellum. The Pharma Innovation Journal. 12(3):15-18. https://www.thepharmajournal.com/archives/2023/vol12issue3/PartA/11-12-654-306.pdf.

Rodrigues, A. C.; Fontão, A. I.; Coelho, A. F.; Leal, M. C.; Soares da Silva, F. A. G.; Wan, Y.; Dourado, A. F. and Gama, F. M. 2019. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. New Biotechnology. 49(25):19-27. https://doi.org/10.1016/j.nbt.2018.12.002.

Rodríguez, A.T.; Morales, B. D. y Ramírez, M. A. 2000. Efecto de extractos vegetales sobre el crecimiento in vitro de hongos fitopatógenos cultivos tropicales. 21(2):79-82. https://www.redalyc.org/pdf/1932/193215024014.pdf.

Ruschioni, U. S.; Loreto, A. N.; Foligni, P. R.; Mannozzi, C. G.; Raffaelli, J. N.; Zamporlini, M. F.; Pasquini, A. M.; Roncolini, M. A.; Cardinali, G. F.; Osimani, M. A.; Aquilanti, P. L.; Isidoro, B. N.; Riolo, M. P. and Mozzon, A. M. 2020. Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) Larvae. Foods. 9(3):317-331. https://doi.org/10.3390/foods9030317.

SAS. 2011. Statistical Analysis System, [SAS Institute Inc]. JMP versión 9.0.1. Statistical Discovery. From SAS. USA: Author. A Business Unit of SAS Campus Drive Cary, NC 27513. https://www.sas.com/en-us/software/stat.html.

Silva, M. A. F.; Moura, K. E.; Salomão, G. D. and Patricio, F. R. A. 2018. Compatibility of Trichoderma isolates with pesticides used in lettuce crop. Summa Phytopathologica. 44(2):137-142. https://doi.org/10.1590/0100-5405/176873.

Shina, M. A. F.; Harshita, D. R.; Sing, R. P.; Gouvind, R. S. and Verma, D. A. 2018. Comprehensive evaluation of Trichoderma harzianum and Trichoderma viride on different culture media & at different temperature and pH. The Pharma Innovation Journal. 7(2):193-195. https://www.thepharmajournal.com/archives/2018/vol7issue2/PartC/7-2-8-168.pdf.

Thomas, L. M. and Gangadhara, N. B. 2017. Evaluation of different culture media, fungicides and bio control agents on the growth of Phytopthora capsici Leonian. causing foot rot of black pepper in vitro. Chemical Science Review and Letters. 6(21):279-286. https://chesci.com/wpcontent/uploads/2017/01/V6i21-51-CS092048024-Narasimha-279-286.pdf.

Vázquez, L. A.; Tlapal, B. B.; Yáñez, M. M. J.; Pérez, P. R. and Quintos, E. M. 2009. Etiology of pepper wilt disease of ‘chile de agua’ (Capsicum annum L.) in Oaxaca, México. Revista de Fitotecnia México. 32(2):127-134. https://www.scielo.org.mx/pdf/rfm/v32n2/v32n2a8.pdf.

Velmourougane, R. K.; Prasanna, R. H.; Chawla, V. G.; Nain, L. I.; Kumar, V. A. and Saxena, A. K. 2019. Trichoderma-Azotobacterbiofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton. Journal of Basic Microbiology. 59(6):632-644. https://doi.org/10.1002/jobm.201900009.

Zhang, P. N.; Xu, W. H.; Xie, J. A.; Cui, S. J.; Yang, C. J.; Zhao, M. J.; Tong, F. Y. and Jiang, C. J. 2021. Screening of cucumber Fusarium wilt bio Inhibitor: high sporulation Trichoderma harzianum mutant cultured on moso bamboo medium. Frontiers in Microbiology. 7(12):763006-763016. https://doi.org/10.3389/fmicb.2021.763006.

Published

2025-03-19

How to Cite

Ceballos-Chávez, Ángel R., Blanca E. López-Valenzuela, Fernando A. Valenzuela- Escoboza, Everardo López-Bautista, Hector A. Marquez-Lujan, and Leidy E. Chávez-García. 2025. “Conidial Reproduction of Trichoderma Asperelloides in Culture Media and Organic Substrates”. Revista Mexicana De Ciencias Agrícolas 16 (1). México, ME:e3510. https://doi.org/10.29312/remexca.v16i1.3510.

Issue

Section

Articles