Mineral nutrition of bean lines under iron chlorosis

Authors

  • Ibar Felipe Tlatilpa-Santamaría Programa de Edafología-Instituto de Recursos Naturales-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56230. Tel. 595 9520200.
  • Ranferi Maldonado-Torres Departamento de Suelos-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Estado de México. CP. 56230. Tel. 595 9521500
  • Manuel Sandoval-Villa Programa de Edafología-Instituto de Recursos Naturales-Colegio de Postgraduados. Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México. CP. 56230. Tel. 595 9520200.
  • María Edna Álvarez-Sánchez Departamento de Suelos-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Estado de México. CP. 56230. Tel. 595 9521500.

DOI:

https://doi.org/10.29312/remexca.v14i2.3419

Keywords:

iron deficiency, iron stress, plant nutrition, strategy I, strategy II

Abstract

Iron deficiency exists in almost every crop in the world and the ability to absorb iron varies widely between plant species. There are groups of plants that are characterized by their ability to grow in soils with low iron availability, called Fe-efficient. In this experiment, bean plants were grown in a greenhouse, in a nutrient solution with suboptimal and optimal concentrations of Fe. The objective was to evaluate the mechanisms of tolerance, concentration and distribution of Fe in bean lines. Six bean lines (three tolerant and three susceptible to iron deficiency) were established. The nutritional concentration and SPAD units were evaluated in young leaves and roots, root volume and dry matter. The results obtained determined a high nutritional imbalance index (NII), transfer coefficient, the ratios P/Fe and K/Ca, concentration of K, Ca, Mg, Mn, Zn, Cu and B in young bean leaves in leaves with iron chlorosis. In the absence of Fe, line 496 showed less chlorosis, the P/Mg ratio and the concentration of P and K increased. When Fe was present in the nutrient solution, lines 496 and 33 had low nutritional indices and higher dry matter production. Line T2 was susceptible to iron chlorosis, but with a concentration of 1 mg L-1 of Fe in the nutrient solution, it had greater production of dry matter, root volume and did not manifest iron chlorosis. Line 33 was susceptible and in the absence of Fe in the solution, the ratios N/P, B/P, Ca/P increased, and the concentration of P, K and B decreased. The addition of 1 mg L-1 of Fe in the nutrient solution increased the concentration of N, P, K and Fe, while in the absence, the concentration of Mn, Zn and Cu in root increased. The differences found in iron bean chlorosis in tolerant and susceptible plants are not due to the concentration of Fe but to internal mechanisms, related to other mineral elements that affect their metabolism.

Downloads

Download data is not yet available.

References

Abadía, B. A.; Sanz, E. M.; Rivas, J. and Abadía, B. J. 1989. Photosynthetic pigments and mineral composition of iron deficient pear leaves. J. Plant Nutr. 12(7):827-838.

Abadía, B. J. 1992. Leaf responses to Fe deficiency: a review. J. Plant Nutr. 15(10):1699-1713.

Abadía, B. J. and Abadía, B. A. 1993. Iron and plant pigments. In: iron chelation in plants and soil microorganisms. Ed. Academic press, New York. 327-343 pp.

Abadía, B. J.; Morales, I. F. and Abadía, B. A. 2000. Photosystem II efficiency in low chlorophyll, iron-deficiency leaves. Plant and Soil. 215(1):183-192.

Alhendawi, R. A.; Volker, R.; Kirkby, E. A. and Marschner, H. 1997. Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum, and maize. J. Plant Nutr. 20(12):1731-1753.

Arahou, M. and Diem, H. G. 1997. Iron deficiency induce cluster (proteoid) root formation in Casuarina glauca. Plant and Soil. 196(1):71-79.

Belkhodja, R. F; Morales, I. F.; Sanz, E. M.; Abadía, B. A. and Abadía, B. J. 1998. Iron deficiency in peach trees: effects on leaf chlorophyll and nutrient concentrations in flowers and leaves. Plant and Soil. 203(1):257-268.

Bertamini, M. and Nedunchzhin, N. 2005. Grapevine growth and physiological response to iron deficiency. J. Plant Nutr. 28(5):157-163.

Bohórquez, J. M.; Romera, F. J. Alcántara, V. E. 2001. Effect of Fe3+, Zn2+ and Mn2+ on ferric reducing capacity and regreening process of the peach rootstock Nemaguard (Prunus persica (L.) Batsch). Plant and Soil. 237(1):157-163.

Campbell, S. A. and Nishio, J. N. 2000. Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponic growth system. J. Plant Nutr. 23(6):741-757.

Clark, R. B. 1991. Iron: unlocking agronomic potential. Solutions. 35(3):24-28.

Connorton, J. M.; Balk, J. and Rodríguez, C. J. 2017.Iron homeostasis in plants an overview in. Metallomics. 9(7):813-823.

Cramer, M. D. O.; Lewis, A. M. and Lips, S. H. 1993. Inorganic carbon fixation and metabolism in maize roots as affected by nitrate and ammonium nutrition. Physiol. Plant. 89(3):632-639.

Curtin, C. H. and Wen, G. Z. 2004. Plant cation-anion balance as affected by the ionic composition of the growing medium. Plant Soil. 267(1/2):109-115.

Dell’Orto, M. X.; Nisi, P. D.; Pontiggia, A. and Zocchi, G. 2003. Fe deficiency response in Parietaria diffusa: a calcicole plant. J. Plant Nutr. 26(10):2057-268.

Foy, C. D. M.; Farina, P. W. and Oakes, A. J. 1998. Iron manganese interactions among clones of nilegrass. J. Plant Nutr. 21(5):987-1009.

Jia, X. M.; Zhu, Y. F.; Hu, Y.; Cheng, L.; Zhao, T. and Wang, Y. 2018. Tolerance to iron-deficiency stress of three apple rootstock species in hydroponic system. Agric. Sci. Technol. 19(1):21-30.

Kassas, S. E. 1984. Effect of iron nutrition on the growth, yield, fruit quality and leaf composition of seeded balady lime stress grown on sandy calcareous soil. J. Plant Nutr. 11(1-5):677-690.

Keshirad, A. A.; Bassiri, A. and Kheradnan, M. 1978. Responses of cowpeas to applications of P and Fe in calcareous soils. Agron. J. 70(1):67-70.

Kosegarten, H.U.; Hoffmann, B. and Mengel K. 1999. Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol. 121(4):1069-1079.

Köseoglu, A. T. 1995. Effect of iron chlorosis on mineral composition of peach leaves. J. Plant Nutr. 18(4):765-776.

Landsberg, E. C. 1996. Hormonal regulation of iron-stress response in sunflower roots: a morphological and cytological investigation. Protoplasma. 194(1):60-80.

Li, J.; Cao, X.; Jia, X. Liu, L.; Cao, H.; Qin, H. and Li, M. 2021. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca Catechu L. Front Plant Sci. 12(710093):1-17.

López-Millán, Ana-Flor; Grusak, M. A; Abadía B. A. and Abadía B. J. 2013. Iron deficiency in plants: an insight from proteomic approaches. Front. Plant Sci. 4 (254) 1-7.

Loué, A. 1988. Los micronutrimentos en la agricultura. Traductor: Domínguez, A. V. Mundi-Prensa. Madrid, España. 200-354 pp.

Maldonado, T. R.; Etchevers, B. J. D.; Alcántar, G. J.; Rodríguez, A. J. and Colinas, L. M. T. 2006. Morphological changes in leaves of Mexican lime affected by iron chlorosis. J. Plant Nutr. 29(4):615-628.

Marika, B.; Maria, L. B.; Simona, C.; Tanja, M.; Stefano, C.; Youry, P.; Emidio, A. and Daniele, D.B. 2015. Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation. Front. Plant Sci. 6(514):1-12.

Marschner, H. 1988. Mechanisms of manganese acquisition by roots from soils. In: manganese in soils and plants. (Ed). Kluwer academic publishers. Boston. 191-204 pp.

Marschner, H. 1991. Symposium summary and future research areas. Ed. Iron nutrition and interaction in plants. Kluwer academic publisher. The Netherlands. 365-372 pp.

Marschner, H. 1995. Mineral nutrition of higher plants. Academic press. London. 313-324 pp.

Morales, I. F.; Grasa, R.; Abadía, B. A. and Abadía, B. J. 1998. Iron chlorosis paradox in fruit trees. J. Plant Nutr. 21(4):815-825.

Parrilla, L. and Schmidt, W. 2019. Iron acquisition strategies in land plants: not so different after all. New Phytologist. 224(1):11-18.

Rijck, C. and Schrevens, E. 1997. Ph influenced by the elemental composition of nutrient solutions. J. Plant Nutr. 20(7-8):911-923.

Riaz, N. and Guerinot, M. L. 2021. All together now: regulation of the iron deficiency response. J. Exp. Bot. 72(6):2045-2055.

Robinson, N. J.; Procter, C. M.; Connolly, E. L. and Guerinot, M. L. 1999. A ferric-chelate reductase for iron uptake from soils. Nature. 397(6721):694-697.

Römheld, V. 2000. The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. J. Plant Nutr. 23(11-12):1629-1643

Rout, G. R. and Sunita, S. 2015. Role of iron in plant growth and metabolism. Reviews Agric. Sci. 3(1-2):1-24.

Schaller, G. 1987. pH changes in the rhizosphere in relation to the pH-buffering of soils. Plant Soil. 97(3):439-444.

Schmidt, W. and Bartels, M. 1996. Formation of root epidermal transfer cell in Plantago. Plant Physiol. 110(1):217-225.

Schmidt, W.; Thomine, S. and Buckhout, T. J. 2020. Iron nutrition and interactions in plants. Front. Plant Sci. 10(670)1-4.

Susin, S. A.; Abadía, J. A.; González-Reyes, J.; Lucena, J. J. and Abadía, B. J. 1996. The pH requirements for in vivo activity of the iron deficiency-induced ‘Turbo’ ferric chelate reductase: a comparation of the iron deficiency induced iron reductase activities of intact plants and isolated plasma membrane fractions in sugar beet. Plant Physiol. 110(1):111-123.

Thomas, F. M.; Brandt, T. and Hartmann, G. 1998. Leaf chlorosis in Pedunculate oaks (Quercus robur L.) on calcareous soils resulting from lime induced manganese/iron deficiency: soil conditions and physiological reactions. Angew. Bot. 72(1-2):28-36.

Toulon, V.; Sentenac H.; Thibaud, J.B.; Davidian, J. C.; Moulineau, C. and Grignon, C. 1992. Role of apoplastic acidification by H+ pump: effect on the sensitivity to pH and CO2 of iron reduction by roots of Brassica napus L. Planta. 186(2):212-218.

Tripathi, D. K.; Singh, S.; Gaur, S.; Singh, S.; Yadav, V.; Liu, S.; Singh; Sharma, S.; Srivastava, P.; Prasad; S.; Dubey; N. K.; Chauhan, D. K. and Sahi, S. 2018. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front. Environ. Sci. 5(86):1-15.

Wairich, A.; Oliveira, B. N.; Arend, E. B.; Duarte, G. L.; Ponte, L. R.; Sperotto, R. A.; Ricachenevsky, F. K. and Fett, J. P. 2019. The combined strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Scientific Reports. 9(16144):1-17.

Welkie, G. W. and Miller, G. W. 1993. Plant iron uptake physiology by nonsiderophore system. In: iron chelation in plants and soils microorganisms. Ed. Barton, L. L. and Hemming, B. C. Academic press. New York. 345-370 pp.

Yang, X.; Römheld, V. and Marschner, H. 1994. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and efficient rice cultivars Oriza sativa L. Plant and Soil. 164(1):1-7.

Published

2023-03-22

How to Cite

Tlatilpa-Santamaría, Ibar Felipe, Ranferi Maldonado-Torres, Manuel Sandoval-Villa, and María Edna Álvarez-Sánchez. 2023. “Mineral Nutrition of Bean Lines under Iron Chlorosis”. Revista Mexicana De Ciencias Agrícolas 14 (2). México, ME:251-63. https://doi.org/10.29312/remexca.v14i2.3419.

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2