Efficacy of bioproducts on the microbial population and diversity of an agricultural soil in arid zones

Authors

  • Mirella Romero-Bastidas Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, colonia el Mezquitito, La Paz, Baja California Sur, México. CP. 23080. Tel. 612 1238800
  • Esli Alexis Mayer-Félix Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, colonia el Mezquitito, La Paz, Baja California Sur, México. CP. 23080. Tel. 612 1238800
  • Pablo Misael Arce-Amézquita Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, colonia el Mezquitito, La Paz, Baja California Sur, México. CP. 23080. Tel. 612 1238800
  • Maurilia Rojas-Contreras Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, colonia el Mezquitito, La Paz, Baja California Sur, México. CP. 23080. Tel. 612 1238800
  • Carlos Rangel-Dávalos Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, colonia el Mezquitito, La Paz, Baja California Sur, México. CP. 23080. Tel. 612 1238800
  • José Saúl Hernández-Rubio Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, colonia el Mezquitito, La Paz, Baja California Sur, México. CP. 23080. Tel. 612 1238800

DOI:

https://doi.org/10.29312/remexca.v16i1.3366

Keywords:

ecology, microbiome, microorganisms, richness

Abstract

Natural products are an alternative to the use of synthetic fertilizers. Nonetheless, their effect on microbial communities in arid soil is poorly known. To reveal the response of soil fungi, bacteria, and nematodes to organic amendments and beneficial microorganisms, plastic boxes were filled with a mixture of unsterilized agricultural soil and five bioproducts, such as Sargassum spp. dry matter, worm humus, worm humus leachate, Trichoderma harzianum, and Bacillus amyloliquefaciens; in addition, a treatment based on a synthetic fertilizer (T17), a fungicide/bactericide (copper), and water control were added. Each treatment was moistened with 1 L of sterile distilled water. At 0 and 30 days after the treatments, the variables of microbial population, relative abundance, and diversity of each type of microorganism were evaluated using the Shannon index. In most of the bioproducts, the microbial population decreased, but the diversity of species present increased, and although there were no significant differences between treatments, the treatments of humus and Sargassum spp. were recorded with the highest value in population and diversity. This study shows that not all bioproducts have a positive effect on the increase of microbiomes in the soil.

Downloads

Download data is not yet available.

References

Baerman, G. K. T. F. 1917. Eine einfache methode zur auffindingvon ankylostomum (Nematoden) Larven in erdproben. Geneesk. Tidjschr. Nederl. Indie. 57(1):131-137.

Bardgett, R. D. and Van-Putten, W. H. 2014. Belowground biodiversity and ecosystem functioning. Nature. 515(1):05-511.

Barnett, H. L. and Hunter, B. B. 1972. Illustrated genera of imperfect fungi. EE. UU. Burgess Publ. Co. 241 p.

Cevallos, S. M.; Urdaneta, O. F. y Jaimes, J. E. 2019. Desarrollo de sistemas de producción agroecológica: Dimensiones e indicadores para su estudio. Revista de Ciencias Sociales. 25(3):172-185.

Chaves-Bedoya, G.; Ortíz-Moreno, M. L. y Ortiz-Rojas, L. Y. 2013. Efecto de la aplicación de agroquímicos en un cultivo de arroz sobre los microorganismos del suelo. Ciencia del suelo. Acta Agronómica. 62(1):66-72.

Delgado-Baquerizo, M.; Reith, F.; Dennis, P. G.; Hamonts, K.; Powell, J. R.; Young, A.; Singh, B. K. and Bissett, A. 2018. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology. 99(3):583-596. Doi: 10.1002/ecy.2137. 29315.

Dix, N. J. and Webster, J. 1995. Fungal ecology. Universidad de Dundee. Primera edición. Editorial Chapman & Hall. London. ISBN-13 978-0412641305. 568 p.

Doran, J. W. 2002. Soil health and global sustainability: translating science into practice. Agriculture Ecosystems and Environment. 88(2):119-127.

Eisenback, J. D. and Triantaphyllou, H. H. 2020. Root-knot nematodes: Meloidogyne species and races. In: Manual of Agricultural Nematology. W. R. Nickle. (Ed). Marcel Dekker, New York. 281-286 pp.

Fatriana, M. W.; Caronge, Y. A.; Djawad, N.; Bourgougnon, A. T.; Makkulawu, and Jumadi O. 2020. Effect of application of algae Sargassum sp. extract to corn plants (Zea mays L.) and microbial response. Earth and Environmental Science. 484(1):1-9. Doi: 10.1088/1755-1315/484/1/012058.

FAO. 2017. Food and Agriculture Organization of the United Nations. The future of food and agriculture: Trends and challenges. Rome, Italia.

Gazolla, V. C.; Bruno, B. L.; Freitas, B. J.; de São, J. F. Beneduzi A.; Eichelberger, G. C. and Kayser, L. V. 2022. Soil-plant-microbiota interactions to enhance plant growth. Revista Brasileira de Ciencias. 46(1). DOI: 10.36783/18069657rbcs20210098.

Golubeva, P.; Ryo, M.; Muller, L. A. H.; Ballhausen, M. B.; Lehmann, A.; Sosa-Hernández, M. A. and Rillig, M. C. 2020. Soil saprobic fungi differ in their response to gradually and abruptly delivered copper. Frontiers in Microbiology. 17(11):1-7. Doi: 10.3389/fmicb.2020.01195.

Laasli, S. E.; Mokrini, F.; Lahlali, R.; Wuletaw, T.; Paulitz, T. and Dababat, A. A. 2022. Biodiversity of nematode communities associated with wheat (Triticum aestivum L.) in Southern Morocco and their contribution as soil health bioindicators. Diversity. 14(194):1-27. Doi.org/10.3390/d14030194.

Levi, T.; Sherman, C.; Pen-Mouratov, S. and Steinberger, Y. 2012. Changes in soil free-living nematode communities and their trophic composition along a climatic gradient. Open Journal of Ecology. 2(2):79-89. Doi.org/10.4236/oje.2012.22010.

Li, S. and Wu, F. 2018. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology. Plant Pathogen Interactions. 9:1-13. Doi.org/10.3389/fmicb.2018.01521.

Lipşa, F. D. and Ulea, E. 2018. Practicum de microbiologie alimentară, Ed. Ion Ionescu de la Brad Iaşi. Editura Ion Ionescu de la Brad. 163 p. ISBN 978-973-147-286-7.

Luo, Z.; Ma, J.; Chen, F.; Li, X.; Zhang, Q. and Yang, Y. 2020. Adaptive development of soil bacterial communities to ecological processes caused by mining activities in the Loess Plateau, China. Microorganisms. 8(4):1-22. Doi.org/10.3390/microorganisms8040477.

Manfredini, A.; Malusà, E.; Costa, C.; Pallottino, F.; Mocali, S.; Pinzari, F. and Canfora, L. 2021. Current methods, common practices, and perspectives in tracking and monitoring bioinoculants in soil. Frontiers in Microbiology. 12:1-22. Doi: 10.3389/fmicb.2021.698491.

Massaglia, S.; Borra, D.; Peano, C.; Sottile, F. and Merlino, V. M. 2019. Consumer preference heterogeneity evaluation in fruit and vegetable purchasing decisions using the best-worst approach. Foods. 8:1-19. Doi: 10.3390/foods8070266.

Mulawarman, J. H.; Bell, D.; Kopp-Holtwiesche, B. and Sikora, R. A. 2001. Effects of natural products on soil organisms and plant health enhancement. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 66(2b):609-17.

Muniappan, V. and Muthukumar, T. V. 2014. Influence of crop species and edaphic factors on the distribution and abundance of Trichoderma in Alfisol soils of southern India. Acta Botanica Croatica. 73(1):37-50. Doi: 10.2478/botcro-2013-0004.

Ranjha, M. M. A. N.; Shafique, B. and Wang, L. 2021. A comprehensive review on phytochemistry, bioactivity and medicinal value of bioactive compounds of pomegranate (Punica granatum). Adv. Tradit. Med. 1-22 pp. https://doi.org/10.1007/s1359 6-021-00566-7.

Ranjha, M. M. A. N.; Shafique, B.; Khalid, W.; Nadeem, H. R.; Mueen-ud-Din, G. and Khalid, M. Z. 2022. Applications of biotechnology in food and agriculture: a MiniReview, Proc. Natl. Acad. Sci., India. Sect. B. Biol. Sci. 92(1):11-15 https://doi.org/10.1007/s40011-021-01320-4.

Reverchon, F.; Ortega-Larrocea, P. M. and Pérez-Moreno, J. 2010. Saprophytic fungal communities change in diversity and species composition across a volcanic soil chronosequence at Sierra del Chichinautzin, Mexico. Annals of Microbiology. 60:217-226. Doi: 10.1007/s13213-010-0030-7.

Russo, R. O. and Beryln, G. P. 1990. The use of organic biostimulants to help low input sustainable agriculture. Journal of Sustainable Agriculture. 1(2):19-42.

Sangiorgio, D.; Spinelli, F. and Vandelle, E. 2022. The unseen effect of pesticides: The impact on phytobiota structure and functions. Frontiers in Agronomy. 4:1-13. Doi: 10.3389/fagro.2022.936032.

Saroj, Y.; Jaydeep, P. and Kanwar, R. S. 2018. The role of free-living nematode population in organic matter recycling. International Journal of Current Microbiology and Aplied Sciences. 7(06):1-10. doi.org/10.20546/ijcmas.2018.706.

Seid, A.; Imren, M.; Ali, M. A.; Toumi, F.; Paulitz, T. and Dababat, A. A. 2021. Genetic resistance of wheat towards plant-parasitic nematodes: status and future prospects. Biotech Studies. 30(1):43-62.

Shannon, C. E. 1948. A mathematical theory of communication. Bell Syst. Technol. 27(1):379-423.

Sher, S. A. 1966. Revision of the Hoplolaiminae (Nematoda) VI. Helicotylenchus Steiner, 1945 1. Nematologica. 12(1):1-56.

Silva, D. J. and Ryder, E. J. 2011. World vegetable industry: production, breeding, trends. Horticultural Reviews. 38(1):1-60. Doi: 10.1002/9780470872376.ch8.

Suman, J.; Rakshit, A.; Ogireddy, S. D.; Singh, S.; Gupta, C. and Chandrakala, J. 2022. Microbiome as a key player in sustainable agriculture and human health. Frontiers in Soil Sciences. 2(1):1-13. Doi: 10.3389/fsoil.2022.821589.

Swaroop, R. M.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M. P.; Yadav, G. S.; Jhariya, M. K.; Jangir, C. K.; Pathan, S. I.; Dokulilova, T.; Pecina, V. and Marfo, T. D. 2020. Impact of agrochemicals on soil microbiota and management: A Review. Land. 9(2):1-21. Doi.org/10.3390/land9020034.

Villenave, C. P.; Ba, A. O. and Rabary, B. 2009. Analyse du fonctionnement biologique du sol par l’étude de la nématofaune: Semis direct versus labour sur les hautes terres près d’Antsirabé (Madagascar). Etude Gest. Sols. 6(3):369-378.

Yang, M.; Meng, F.; Gu, W.; Li, F.; Tao, Y.; Zhang, Z.; Zhang, F.; Yang, X.; Li, J. and Yu, J. 2020. Effects of natural products on bacterial communication and network-quorum sensing. Hindawi BioMed. Research International. 10 p. Doi.org/10.1155/2020/8638103.

Zhao, H.; Li, X.; Zhang, Z.; Yang, J. T.; Zhao, Y.; Yang, Z. and Hu, Q. 2019. Effects of natural vegetative restoration on soil fungal and bacterial communities in bare patches of the southern Taihang Mountains. Ecology and Evolution. 9(18):10432-10441. Doi:10.1002/ece3.5564.

Zou, Q.; An, W. H. and Wu, C. 2017. Red mud-modifed biochar reduces soil arsenic availability and changes bacterial composition. Environm. Chem. Lett. 16(1):615-622. Doi.org/10.1007/s10311-017-06881.

Published

2025-03-04

How to Cite

Romero-Bastidas, Mirella, Esli Alexis Mayer-Félix, Pablo Misael Arce-Amézquita, Maurilia Rojas-Contreras, Carlos Rangel-Dávalos, and José Saúl Hernández-Rubio. 2025. “Efficacy of Bioproducts on the Microbial Population and Diversity of an Agricultural Soil in Arid Zones”. Revista Mexicana De Ciencias Agrícolas 16 (1). México, ME:e3366. https://doi.org/10.29312/remexca.v16i1.3366.

Issue

Section

Articles