Chemical, bioactive and color analysis in three varieties of guava
DOI:
https://doi.org/10.29312/remexca.v15i6.3360Keywords:
Psidium guajava L., phytochemicals, vitamin CAbstract
Guava (Psidium guajava L.) is a fruit highly prized for its nutritional value and antioxidant capacity. In Mexico, the state of Zacatecas is the third largest guava producer. In the south of the state is the region of Santiago el Chique, which contributes to this production. This work aimed to determine the moisture, °Brix, titratable acidity, pH, ascorbic acid content, color, as well as the content of total polyphenols and antioxidant capacity of three varieties of guava (Blanca, China and Fresa), acquired in 2022 with producers in the locality of Santiago el Chique, Zacatecas. The analyses were conducted in the Food Research and Safety Laboratory of the nutrition academic program of the Autonomous University of Zacatecas. The results showed significant differences in practically all the parameters analyzed, except in the case of the percentage of moisture. Compared to the other varieties, the high concentration of ascorbic acid in the ‘Fresa’ guava stands out.
Downloads
References
Aguilar, K.; Garvín, A.; Ibarz, A. and Augusto, P. E. D. 2017. Ascorbic acid stability in fruit juices during thermosonication. Ultrasonics Sonochemistry. 37(1):375-381. Doi.org/10.1016/j.ultsonch.2017.01.029.
Andarwulan, N.; Kurniasih, D.; Apriady, R. A.; Rahmat, H.; Roto, A. V. and Bolling, B. W. 2012. Polyphenols, carotenoids, and ascorbic acid in underutilized medicinal vegetables. Journal of Functional Foods. 4(1):339-347. Doi:10.1016/j.jff.2012.01.003.
Angulo-López, J. E.; Flores-Gallegos, A. C.; Torres-León, C.; Ramírez-Guzmán, K. N.; Martínez, G. A. and Aguilar, C. N. 2021. Guava (Psidium guajava L.) fruit and valorization of industrialization by products. Processes. 9(6):1-17. Doi.org/10.3390/pr9061075.
Ammann, J.; Stucki, M. and Siegrist, M. 2020. True colours: advantages and challenges of virtual reality in a sensory science experiment on the influence of colour on flavour identification. Food Quality and Preference. 86:1-10. https://doi.org/10.1016/j.foodqual.2020.103998.
AOAC. 2000. Association of Official Analytical Chemists. Official Methods of Analysis of international 17th Ed. Gaithersburg, MD, USA. 2 200 p.
Ariza, M. T.; Reboredo-Rodríguez, P.; Cervantes, L.; Soria, C.; Martínez-Ferri, E.; González-Barreiro, C.; Cancho-Grande, B.; Battino, M. and Simal-Gándara, J. 2018. Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs. Food Chemistry. 248(1):155-165. Doi.org/10.1016/j.foodchem.2017.11.105.
Brand-Williams, W.; Cuvelier, M. E. and Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. LWT Food Science and Technology. 28(1):25-30. Doi.org/10.1016/S0023-6438(95)80008-5.
Castro-López, C.; Sánchez-Alejo, E. J.; Saucedo-Pompa, S.; Rojas, R.; Aranda-Ruiz J. and Martínez-Ávila, G. C. G. 2016. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage. Heliyon. 2:e00152. Doi.org/10.1016/j.heliyon.2016.e00152.
Cervantes, L.; Martínez-Ferria, E.; Soria, C. and Ariza, M. T. 2020. Bioavailability of phenolic compounds in strawberry, raspberry and blueberry: Insights for breeding programs. Food Bioscience. 37(1):1-10. Doi.org/10.1016/j.fbio.2020.100680.
Fajardo-Ortiz, A. G.; Legaria-Solano, J. P.; Granados-Moreno, J. E.; Martínez-Solís, J. and Celis-Forero, A. 2019. Caracterización morfológica y bioquímica de tipos de guayaba (Psidium guajava L.) colectados en Sumapaz. Colombia. Revista Fitotecnia Mexicana. 42(3):289-299.
Fraga, C. G.; Croft, K. D.; Kennedy D. O.; and Tomás-Barberán F. A. 2021. The effects of polyphenols and other bioactives on human health. Food and Function. 10(2):514-528.
Kajdžanoska, M.; Petreska, J. and Stefova, M. 2011. Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. Journal of Agricultural and Food Chemistry. 59(10):5272-5278. https://doi.org/10.1021/jf2007826.
Kanwal, N.; Randhawa, M. A. and Iqbal, Z. 2018. Influence of processing methods and storage on physicochemical and antioxidant properties of guava jam. International Food Research Journal. 24(5):2017-2027.
Kumari, P.; Mankar, A.; Karuna, K.; Homa, F.; Meiramkulova, K. and Siddiqui, M. W. 2020. Mineral composition pigments, and postharvest quality of guava cultivars commercially grown in India. Journal of Agriculture and Food Research. 2(1):1-5. Doi.org/10.1016/j.jafr.2020.100061.
Kutlu N.; Pandiselvam, R.; Kamiloglu, A.; Saka, I.; Sruthi, N. U.; Kothakota, A.; Socol C. T. and Maerescu, C. M. 2022. Impact of ultrasonication applications on color profile of foods. Ultrasonics Sonochemistry. 89(1):1-17. Doi.org/10.1016/j.ultsonch.2022.106109.
Li, B. B.; Smith, B. and Hossain, M. 2006. Extraction of phenolics from citrus peels: II. Enzyme assisted extraction method. Separation and Purification Technology. 48:189-196. Doi.org/10.1016/j.foodchem.2016.10.137.
Li, K.; Ma, C.; Jian, T.; Sun, H.; Wang, L.; Xu, H.; Li, W.; Su, H. and Cheng, X. 2017. Making good use of the byproducts of cultivation: green synthesis and antibacterial effects of silver nanoparticles using the leaf extract of blueberry. Journal of Food Science & Technology. 54(11):3569-3576. Doi.org/10.1007/s13197-017-2815-1.
Marquina, V.; Araujo, L.; Ruíz, J.; Rodríguez-Malaver, A and Vit, P. 2008. Composición química y capacidad antioxidante en fruta, pulpa y mermelada de guayaba (Psidium guajava L.). Archivos Latinoamericanos de Nutrición. 58(1):98-102.
Musa, K. H.; Abdullah, A. and Subramaniam, V. 2015. Flavonoid profile and antioxidant activity of pink guava. ScienceAsia. 41(3):149-154. Doi.org/10.2306/scienceasia1513-1874.2015.41.149.
Orsavová, J.; Hlaváčová, L.; Mlček, J.; Snopek, L. and Mišurcová, L. 2019. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chemistry. 284(1):323-333. Doi.org/10.1016/j.foodchem.2019.01.072.
Panayampadan A. S.; Alam, M. S.; Aslam, R.; Gupta, S. K. and Sidhu, G. K. 2022. Effects of alternating magnetic field on freezing of minimally processed guava. LWT- Food Science and Technology. 163(1):1-11. Doi.org/10.1016/j.lwt.2022.113544.
Patel, P.; Sunkara, R.; Walker, L. T. and Verghese, M. 2016. Effect of drying techniques on antioxidant capacity of guava fruit. Food and Nutrition Sciences. 7(7):544-554. Doi.org/10.4236/fns.2016.77056.
Pennington, J. A. T. and Fisher, R. A. 2009. Classification of fruits and vegetables. Journal of Food Composition and Analysis. 22(Supplement)):S23-S31. https://doi.org/10.1016/j.jfca.2008.11.012.
Porto I. S. A.; Santos-Neto, J. H.; Santos, L. O.; Gomes, A. A. and Ferreira, S. L. C. 2019. Determination of ascorbic acid in natural fruit juices using digital image colorimetry. Microchemical Journal. 149(1):1-4. Doi.org/10.1016/j.microc.2019.104031.
Rasouli, H. M.; Hosein, F. and Khodarahmi, R. 2017. Polyphenols and their benefits: A review. International journal of food properties. 20(S2):S1700-S1741. Doi.org/10.1080/10942912.2017.1354017.
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine. 26(9-10):1231-1237. Doi.org/10.1016/S0891-5849(98)00315-3.
Rojas-Barquera, D. and Narváez-Cuenca, C. E. 2009. Determinación de vitamina C, compuestos fenólicos totales y actividad antioxidante de frutas de guayaba (Psidium guajava L.) cultivadas en Colombia. Quimica Nova. 32(9):2336-2340.
Rojas-Ocampo, E. L.; Torrejon-Valqui, L. D.; Muñoz-Astecker, M.; Medina-Mendoza, D.; Mori-Mestanza, and Castro-Alayo, E. M. 2021. Antioxidant capacity, total phenolic content and phenolic compounds of pulp and bagasse of four Peruvian berries. Heliyon. 7(8):e07787. Doi.org/10.1016/j.heliyon.2021.e07787.
Saura-Calixto, F. and Goñi, I. 2006. Antioxidant capacity of the spanish mediterranean Diet. Food Chemistry. 94(3):442-447. http://dx.doi.org/10.1016/j.foodchem.2004.11.033.
Schifferstein H. N.; Wehrleb J. T. and Carbon, C. C. 2019. Consumer expectations for vegetables with typical and atypical colors: The case of carrots. Food quality and preference. 72(1):98-108. Https://doi.org/10.1016/j.foodqual.2018.10.002.
SIAP. 2022. Servicio de Información Agroalimentaria y Pesquera. Producción anual agrícola. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119
Shahidi, F. and Ambigaipalan, P. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects a review. Journal of functional foods. 18(Parte B):820-897. http://dx.doi.org/10.1016/j.jff.2015.06.018.
Tomás-Barberán, F.; Gil, M.; Cremin, P.; Waterhouse, A.; Hess-Pierce, B. and Kader, A. 2001. HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. Journal of Agricultural and Food Chemistry. 49(10):4748-4760. https://doi.org/10.1021/jf0104681.
Vagiri, M.; Ekholm, A.; Öberg, E.; Johansson, E.; Andersson, S. C. and Rumpunen, K. 2013. Phenol and ascorbic acid in black currants (Ribes nigrum L.): variation due to genotype, location, and year. Journal of Agricultural and Food Chemistry. 61(39):9298-9306. https://doi.org/10.1021/jf402891s.
Vargas-Madriz, H.; Barrientos-Martínez, A.; Cruz-Alvarez, O.; Martínez-Damián, M. T. and Talavera-Villareal, A. 2018. Physicochemical quality parameters in guava fruit with presence of larvae of Conotrachelus dimidiatus (Champion) (Coleoptera: Curculionidae). Revista Chapingo Serie Horticultura. 25(2):103-112.
Verma, M.; Rai, G. K. and Kaur, D. 2018. Effect of extraction solvents on phenolic content and antioxidant activities of Indian gooseberry and guava. International Food Research Journal. 25(2):762-768
Wrolstad, R. E.; Durst, R. W. and Lee, J. 2005. Tracking color and pigment changes in anthocyanin products. Trends in Food Science and Technology. 16(9):423-428.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.