Impact of nanofertilizers on cucumber yield and quality under greenhouse conditions

Authors

  • Alonso Méndez-López Departamento de Botánica-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 2182154
  • Juana Cruz García-Santiago Departamento de Botánica-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 2182154
  • Laura María González-Méndez Departamento de Botánica-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 2182154
  • Silvia Yudith Martínez-Amador Departamento de Botánica-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 2182154
  • Aida Isabel Leal-Robles Departamento de Botánica-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 844 2182154
  • Miriam Sánchez-Vega CONACYT-Departamento de Parasitología-Universidad Autónoma Agraria Antonio Narro. Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila, México. CP. 25315. Tel. 595 1020249

DOI:

https://doi.org/10.29312/remexca.v15i4.3343

Keywords:

Cucumis sativus L, firmness, chlorophyll

Abstract

Nanofertilizers represent an efficient method for fertilizing crops, with a positive impact on plant development. This work aimed to determine the impact of Nubiotek Ultra Ca and Nubiotek Hyper Fe+Mg nanofertilizers on the yield and quality of cucumber fruits in 2020. Two doses of Nubiotek Ultra Ca (0 and 20 L ha-1) and four doses of Nubiotek Hyper Fe+Mg (0, 2, 4, and 8 ml L-1) were evaluated. An experimental design of randomized complete blocks was used with a factorial arrangement (2x4), with four repetitions. The results showed that the nanofertilizers evaluated did not improve internode distance, dry weight of each organ, root length, total soluble solids, vitamin C, titratable acidity, and fruit color parameters compared to the values obtained with the control. On the other hand, with the treatments of 0 L ha-1 Nubiotek Ultra Ca + 8 ml L-1 Nubiotek Hyper Fe+Mg and 20 L ha-1 Nubiotek Ultra Ca + 2 ml L-1 Nubiotek Hyper Fe+Mg, the fruit yield increased by 111 and 123%, respectively, compared to the control. Likewise, a greater firmness of fruits was observed when applying Nubiotek Ultra Ca and Nubiotek Hyper Fe+Mg in doses of 20 L ha-1 + 8 ml L-1 ; on the other hand, the highest content of chlorophyll a, b and total was achieved with doses of 20 L ha-1 + 4 ml L-1 and 20 L ha-1 + 8 ml L-1.

Downloads

Download data is not yet available.

References

AOAC. 2000. Association of Official Analytical Chemists. official methods of analysis international. 17th Ed. Washington, DC. 1-30 pp.

Astaneh, N.; Bazrafshan, F.; Zare, M.; Amiri, B. and Bahrani, A. 2021. Nano-fertilizer prevents environmental pollution and improves physiological traits of wheat grown under drought stress conditions. Scientia Agropecuaria. 12(1):41-47. http://dx.doi.org/10.17268/sci.agropecu.2021.005.

Azarmi, R.; Tabatabaei, S. J. and Chaparzadeh, N. 2015. Effect of magnesium on growth, fruit quality and sugar content in cucumber under various light intensities. International journal of biology, pharmacy and allied sciences. 4(9):5915-5932.

Chen, H. D. and Yada, R. Y. 2011. Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci. Technol. 22(11):585-594. https://doi.org/10.1016/j.tifs.2011.09.004.

Congreves, K. A.; Otchere, O. A.; Ferland, D. J.; Farzadfar, S. K.; Williams, S. J. and Arcand, M. M. 2021. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 12:637108. https://doi.org/10.3389/fpls.2021.637108.

Cvelbar, W, N.; Koron, D.; Jakopič, J.; Veberič, R.; Hudina, M. and Baša, C. H. 2021. Influence of nitrogen, calcium and nano-fertilizer on strawberry (Fragaria × ananassa Duch.) fruit inner and outer quality. Agronomy. 11(5):1-8. https://doi.org/10.3390/agronomy11050997.

Hamouda, H. A.; Khalifa, R. K. M.; El-Dahshouri, M. F. and Zahran, N. G. 2016. Yield, fruit quality and nutrients content of pomegranate leaves and fruit as influenced by iron, manganese and zinc foliar spray. International journal of pharm tech research. 9(3):46-57.

Rahman, M. H.; Hasan, M. N.; Nigar, S.; Ma, F.; Aly Saad Aly, M. and Khan, M. Z. H. 2021. Synthesis and characterization of a mixed nanofertilizer influencing the nutrient use efficiency, productivity, and nutritive value of tomato fruits. ACS omega. 6(41):27112-27120.

Kanwar, M. K.; Sun, S.; Chu, X. and Zhou, J. 2019. Impacts of metal and metal oxide nanoparticles on plant growth and productivity. In: Nanomaterials and Plant Potential. Ed. First edition. Springer. Cham, Switzerland. 379-392. pp. https://doi.org/10.1007/978-3-030-05569-1-15.

Khalil, N. H. and Hammoodi, J. K. 2021. Effect of nitrogen, potassium and calcium in strawberry fruit quality. International journal of agricultural and statistical sciences. 16(1):1967-1972.

Kumar, P. 2020. Effect of fertigation on growth and fruit yield of cucumber (Cucumis sativus L.) grown under naturally ventilated polyhouse condition. Journal of Pharmacognosy and Phytochemistry. 9(6):124-126.

Langer S. E.; Marin, M.; Burgos, J. L.; Martínez, G. A.; Civello, P. M. and Villarreal, N. M. M. 2019. Calcium chloride treatment modifies cell wall metabolism and activates defense responses in strawberry fruit (Fragaria × ananassa, Duch). J. Sci Food Agric. 99(8):4003-4010. https://doi.org/10.1002/jsfa.9626.

Li, H.; Liu, H.; Gong, X.; Li, S.; Pang, J.; Chen, Z. and Sun, J. 2021. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agricultural Water Management. 245:106570. https://doi.org/10.1016/j.agwat.2020.106570.

Maathuis, F. J. and Diatloff, E. 2013. Roles and functions of plant mineral nutrients. In: plant mineral nutrients. Ed. First edition. Humana Press. USA. 1-21 pp.

Menossi, M.; Casalongué, C. and Alvarez, V. A. 2022. Bio nanocomposites for modern agricultural applications. In: Handbook of consumer nanoproducts. Mallakpour. Ed. First edition. Springer Nature. Singapore. 1-38 pp.

Mohammed, S. W.; Mishra, S. K.; Singh, R. K.; Singh, M. K. and Soni, S. S. 2021. The effect of NPK on the growth, yield and quality of cucumber (Cucumis sativus L.) under protected cultivation. Journal of pharmacognosy and phytochemistry. 10(1):2011-2014.

Morsy, A. S. M.; Awadalla, A. and Sherif, M. M. 2018. Effect of irrigation, foliar spray with nano-fertilizer (lithovit) and n-levels on productivity and quality of durum wheat under Toshka Conditions. Assiut journal of agricultural Sciences. 49(3):1-26. https://doi.org/10.21608/AJAS.2018.14899.

Padayatt, S. J.; Daruwala, R.; Wang, Y.; Eck, P. K.; Song, J.; Koh, W. S. and Levine, M. 2001. Vitamin C: from molecular actions to optimum intake. In: Handbook of antioxidants. Cadenas, E. and Packer, L. Ed. CRC Press. Washington, DC, USA. 117-145 pp.

Pirvulescua, A.; Salaa, F. and Boldea, M. 2015. Variation of chlorophyll content in sunflower under the influence of magnetic nanofluids. AIP Conf. Proc. 1648(1):670009. https://doi.org/10.1063/1.4912904.

Rajput, V. D.; Singh, A.; Minkina, T. M.; Shende, S. S.; Kumar, P. and Verma, K. K. 2021. Potential applications of nanobiotechnology in plant nutrition and protection for sustainable agriculture. In: Nanotechnology in plant growth promotion and protection: Recent advances and impacts. Ingle, A. P. Ed. First edition. John Wiley & Sons Ltd. West Sussex, UK. 79-92. pp.

Raliya, R.; Saharan, V.; Dimkpa, C. and Biswas, P. 2017. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem. 66(26):6487-6503. https://doi.org/10.1021/acs.jafc.7b02178.

Sajid, M.; Ullah, I.; Rab, A.; Shah, S. T.; Basit, A.; Bibi, F. and Ahmad, M. 2020. Foliar application of calcium improves growth, yield and quality of tomato cultivars. Pure and applied biology. 9(1):10-19. http://dx.doi.org/10.19045/bspab.2020.90002.

Singh, J.; Singh, M. K.; Kumar, M.; Gupta, A. and Singh, K. P. 2020. Growth, yield and quality parameters of cucumber (Cucumis sativus L.) as influenced by integrated nutrient management application. Int. J. Curr. Microbiol. App. Sci. 9(10):1455-1462. https://doi.org/10.20546/ijcmas.2020.910.173.

Steiner, A. A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant soil 15(2):134-154. https://doi.org/10.1007/BF01347224.

Verma, K. K.; Song, X. P.; Joshi, A.; Rajput, V. D.; Singh, M. and Sharma, A. 2022. Nanofertilizer possibilities for healthy soil, water, and food in future: an overview. frontiers in plant science. 13:865048. https://doi.org/10.3389/fpls.2022.865048.

Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of plant physiology. 144(3):307-313.

Published

2024-06-28

How to Cite

Méndez-López, Alonso, Juana Cruz García-Santiago, Laura María González-Méndez, Silvia Yudith Martínez-Amador, Aida Isabel Leal-Robles, and Miriam Sánchez-Vega. 2024. “Impact of Nanofertilizers on Cucumber Yield and Quality under Greenhouse Conditions”. Revista Mexicana De Ciencias Agrícolas 15 (4). México, ME:e3343. https://doi.org/10.29312/remexca.v15i4.3343.

Issue

Section

Articles

Most read articles by the same author(s)