Obtaining bioplastic films from castor oil plant

Authors

  • Alondra Gallegos-Carrillo Academia de Ingeniería en Tecnología Ambiental-Universidad Politécnica de Lázaro Cárdenas. Carretera La Orilla-La Mira km 156, Lázaro Cárdenas, Michoacán, México. CP. 60998
  • Julián López-Tinoco Facultad de Ingeniería Química-Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México https://orcid.org/0000-0002-7518-1737
  • Andrés Alejandro Damian-Reyna División de Ingeniería en Industrias Alimentarias-Instituto Tecnológico Superior de Puruándiro. Puruándiro, Michoacán, México. CP. 58532
  • Francisco Augusto Núñez-Pérez Academia de Ingeniería en Tecnología Ambiental-Universidad Politécnica de Lázaro Cárdenas. Carretera La Orilla-La Mira km 156, Lázaro Cárdenas, Michoacán, México. CP. 60998
  • Federico Núñez-Piña Academia de Ingeniería en Logística y Transporte-Universidad Politécnica de Lázaro Cárdenas
  • José Manuel Zapien Rodríguez Academia de Ingeniería en Mecatrónica-Universidad Politécnica de Lázaro Cárdenas

DOI:

https://doi.org/10.29312/remexca.v15i3.3335

Keywords:

Ricinus communis L., casting, cellulose, tensile strength

Abstract

The excessive use of petroleum-based plastics creates a serious problem of environmental pollution, for this reason, this work proposes the production of bioplastic films based on cellulose extracted from leaves and stems of Ricinus communis L. (castor oil plant). The project was carried out in 2022 in the state of Michoacán, Mexico. The bioplastic was obtained in two stages, first the extraction of cellulose is carried out by an alkaline treatment at 80 °C, then, the cellulose obtained is mixed with water, glycerin, and acetic acid for the formation of the bioplastic film by the casting method. With the above procedure, uniform films with a thickness of 0.12 mm were obtained. Regarding the tensile strength, a maximum value of 7.1 MPa was found, as the amount of glycerin increases, the tensile strength increases. Through scanning electron microscopy analysis, it was observed that bioplastic films with 5% glycerin exhibit more uniform and homogeneous textures. The castor oil plant can be used not only to obtain oil but also to obtain plastics from sources alternative to petroleum, which would favor its cultivation in Michoacán.

Downloads

Download data is not yet available.

References

ASTM D638. 2014. Standard test method for tensile properties of plastics. ASTM International, West Conshohocken. Doi: 10.1520/D0638-14.

Chopra, L. 2023. Extraction of cellulose from agro waste- a short review. Materials Today: Proceedings. Doi: 10.1016/j.matpr.2023.04.378.

Escoto, G. T.; Murillo, V. R. N.; Rodríguez, R. A.; Anzaldo, H. J. y Rivera, P. J. J. 2015. Obtención de celulosa blanqueada de Ricinus communis L. mezclada con fibra industrial para fabricar papel bond. Revista Mexicana de Ciencias Forestales. 6(28):106-125.

Fakhouri, F. M.; Costa, D.; Yamashita, F.; Martelli, S. M.; Jesús, R. C.; Alganer, K. and Innocentini-Mei, L. H. 2013. Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers. 95(2):681-689.

Jerez, A.; Partal, P.; Martínez, I.; Gallegos, C. and Guerrero, A. 2007. Protein-based bioplastics: Effect of thermo-mechanical processing. Rheologica. 46(5):711-720. Doi: 10.1007/s00397-007-0165-z.

INIFAP. 2022. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. La Higuerilla como cultivo alternativo. https://www.gob.mx/inifap/articulos/la-higuerilla-como-cultivo-de-alternativa.

Landoni, M.; Bertagnon, G.; Ghidoli, M.; Cassani, E.; Adani, F. and Pilu, R. 2023. Opportunities and challenges of castor bean (Ricinus communis L.) genetic improvement. Agronomy. 13(8):2076-2082. DOI: 10.3390/agronomy 13082076.

López-Martínez, A.; Bolio-López, G. I.; Veleva, L.; Solórzano-Valencia, M.; Acosta-Tejada, G.; Hernández-Villegas, M. M. y Córdova-Sánchez, S. 2016. Obtención de celulosa a partir de bagazo de caña de azúcar (Saccharum spp.). Agroproductividad. 9(7):41-45.

Mayhuire, E. A.; Huamaní, Y. C.; Zanard, L. M. y de Miranda, E. M. 2019. Biopelículas producidas con cáscara de naranja y reforzadas con celulosa bacteriana. Revista de la Sociedad Química del Perú. 85(2):231-241. Doi: 10.37761/rsqp.v85i2.80.

Nandiyanto, A. B. D.; Fiandini, M.; Ragadhita, R. Sukmafitri, A.; Salam, H. and Triawan, F. 2020. Mechanical and biodegradation properties of cornstarch-based bioplastic material. Materials Physics and Mechanics. 44(3):380-391. Doi: 10.18720/MPM.4432020-9.

Navia, D. P.; Villada, H. S. y Ayala, A. A. 2013. Evaluación mecánica de bioplásticos semirrígidos elaborados con harina de yuca. Biotecnología en el sector agropecuario y agroindustrial. 11:77-84.

Palma-Rodríguez, H.; Salgado-Delgado, R.; Páramo-Calderón, D.; Vargas-Torres, A. y Meza-Nieto, M. 2017. Caracterización parcial de películas biodegradables elaboradas con almidón de plátano y proteínas séricas de la leche. Acta Universitaria. 27(1):26-33. Doi: 10.15174/au.2017.1215.

Pinos, A. y Braulio, J. 2019. Modificación de la celulosa obtenida de la fibra de banano para el uso de polímeros biodegradables. Afinidad. 76(585):45-51.

Saiful, H. H.; Saleha, S. and Iqbalsyah, T. M. 2019. Development of bioplastic from wheat Janeng starch for food packaging. In: IOP conference series: materials science and engineering. Doi: 10.1088/1757-899X/523/1/012015.

Santana, R. F.; Bonomo, R. C. F.; Gandolfi, O. R. R.; Rodríguez, L. B.; Santos, L. S.; dos Santos Pires, A. C. and Veloso, C. M. 2018. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology. 55:278-286.

Shekade, S. V.; Shirolkar, S. V.; Deshkar, S. S. and Giram, P. S. 2023. Phytochemical, Pharmacognostic, and Pharmacological aspects of Ricinus communis Seed Oil. An Overview. The Natural Products Journal. 13(3):31-47.

Valencia, G. L.; Borbón, G. A.; Ochoa, E. X. M.; Antuna, G. O.; Hernández, H. A. y Coyac, R. J. L. 2019. Productividad de higuerilla (Ricinus communis L.) en el norte de Sinaloa. Revista Mexicana de Ciencias Agrícolas. 10(5):1011-1022. DOI.org/10.29312/remexca.v10i5.1790.

Vinayaka, D. L.; Guna, V.; Madhavi, D.; Arpitha, M. and Reddy, N. 2017. Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Industrial Crops and Products. 100:126-131. Doi: 10.1016/j.indcrop.2017.02.019.

Yeboah, A.; Ying, S.; Lu, J.; Xie, Y.; Amoanimaa-Dede, H.; Boateng, K. G. and Yin, X. A. 2021. Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. Food Science and Technology. 399-413 pp. Doi.org/10.1590/fst.19620.

Published

2024-05-24

How to Cite

Gallegos-Carrillo , Alondra, Julián López-Tinoco, Andrés Alejandro Damian-Reyna, Francisco Augusto Núñez-Pérez, Federico Núñez-Piña, and José Manuel Zapien Rodríguez. 2024. “Obtaining Bioplastic Films from Castor Oil Plant”. Revista Mexicana De Ciencias Agrícolas 15 (3). México, ME:e3335. https://doi.org/10.29312/remexca.v15i3.3335.

Issue

Section

Articles