Hydraulic modeling of three flumes for minimal sedimentation

Authors

  • Juan Gabriel Brigido-Morales Posgrado de Ingeniería Agrícola y Uso Integral del Agua-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. (jgabriel.brigido@gmail.com)
  • Mauricio Carrillo-García Posgrado de Ingeniería Agrícola y Uso Integral del Agua-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230. (jgabriel.brigido@gmail.com)
  • Jorge Víctor Prado-Hernández Departamento de Suelos-Universidad Autónoma Chapingo. Carretera México-Texcoco km 38.5, Chapingo, Texcoco, Estado de México, México. CP. 56230
  • Jorge Flores-Velázquez Postgrado en Hidrociencias, Campus Montecillo-Colegio de Postgraduados. Carretera México-Texcoco km 36.5. Montecillo, Texcoco, Estado de México, México. CP. 56230

DOI:

https://doi.org/10.29312/remexca.v15i1.3317

Keywords:

hydraulic simulation, natural runoff, sediment flow, water measurement

Abstract

The sustainability of water use in agriculture is very important, and to achieve this, proper management of surface water resources is required, which, in small basins, depends on good measurement of flow rate data. This work analyzes the hydraulic performance of three proposed modified long-throated flumes with a 10% slope supercritical channel by using the WinFlume® v.1.06 software for a maximum flow of 50 L s-1, for clean water and in conditions in which the cross section of the inlet was modified by sediments. Hydraulic simulations were performed for triangular, rectangular, and trapezoidal cross sections in the throat and the supercritical channel by using the Iber® v.2.5.2 software to compare the pattern of the WinFlume® gauging curve with the results of Iber®; the difference between both gauging curves was a maximum error of 3% in the three cross-sectional areas. For hydraulic simulation in the supercritical modified cross-sectional area for clean flow water and sediment flow water, data located at half the total length of the supercritical channel were taken. Variations in flow depth assuming sedimentation were negligible, and it was found that the water profile in the supercritical channel was not affected, so it can be used as an indicator. In addition, it was observed that the best cross-sectional area for the channel was the rectangular one with a maximum of 0.9997 R2 for the flow rate curve (Q-h).

Downloads

Download data is not yet available.

References

Aali, F. and Vatankhah, A. R. 2023. Experimental study of simple flumes with trapezoidal contraction. Flow measurement and instrumentation. 90:102328. Doi: 10.1016/j.flowmeasinst.2023.102328.

Ackers, J.; Brandt, M. and Powell, J. 2001. Hydraulic characterization of deposits and review of sediment modelling. UK water industry research, London, UK. 01/DW/03/18.

Agazadeh, B. and Mohammadi, M. 2013. Experimental study of incipient motion of non-cohesive sediment in a rigid triangular channel. In: 16th International conference on transport & sedimentation of solid particles. Rostock University, Rostock, Germany. 1-8 pp.

Aksoy, H.; Safari, M. J. S.; Unal, N. E. and Mohammadi, M. 2017. Velocity based analysis of sediment incipient deposition in rigid boundary open channels. Water Science and Technology. 76(9):2535-2543.

Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J. y Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 30(1):1-10.

Blokker, E. J. M.; Vreeburg, J. H. G.; Schaap, P. G. and van Dijk, J. C. 2011. The self-cleaning velocity in practice. Water Distribution Systems Analysis. 187-199 pp.

Bos, M. G. and Wijbenga, J. H. A. 1997. Passage of sediment through flumes and over weirs. Irrigation and Drainage Systems. 11:29-39. Doi: 10.1023/A:1005752711183.

Carrillo, G. M. 1999. Sediment-resistant flume for hydrologic measurements. Tesis doctoral. Universidad de Arizona. Repositorio Institucional Universidad de Arizona. 15-104 pp.

Castro-Orgaz, O. and Mateos, L. 2014. Water discharge measurement in agricultural catchments using critical depth flumes affected by sediment deposition. Journal of Irrigation Drainage Engineering. 140(3):04013018. Doi: 10.1061/(asce)ir.1943-4774.0000672

Cea, L.; Puertas, J. and Vázquez-Cendón, M. E. 2007. Depth averaged modelling of turbulent shallow water flow with wet-dry fronts. Archives of Computational Methods in Engineering. 14(3):303-341. Doi: 10.1007/s11831-007-9009-3.

Chicco, D.; Warrens, M. J. and Jurman, G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science. 7:e623.

Chow, Ven Te. 1988. Open channel hydraulics, McGraw-Hill book company. New York USA. 680 p.

Clemmens, A. J.; Wahl, T. L.; Bos, M. G. and Reploge, J. A. 2001. Water measurement with Flumes and Weirs. International Institute for Land reclamation and improvement (ILRI). Publication 58. Wageningen, The Netherlands. 382 p.

Comisión Nacional del Agua. 2019. Atlas de agua en México. Ed. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Cd. Méx.

De Fraiture, C.; Molden, D. and Wichelns, D. 2010. Investing in water for food, ecosystems, and livelihoods: an overview of the comprehensive assessment of water management in agriculture. Agricultural Water Management. 97(4):495-501. Doi:10.1016/j.agwat.2009.08.015

Haghshenas, V. and Vatankhah, A. R. 2021. Discharge equation of semicircular side weirs: an experimental study. Flow Measurement and Instrumentation. 81:102041.

Ibrahim, M. M. 2015. Bed profile downstream compound sharp crested V notch weir. Alexandria Engineering Journal. 54(3):607-613.

Imanian, H.; Mohammadian, A. and Hoshyar, P. 2021. Experimental and numerical study of flow over a broad crested weir under different hydraulic head ratios. flow measurement and instrumentation. 80:102004.

Prado-Hernández J. V.; Rivera-Ruíz, P.; León-Mojarro, B.; Carrillo-García, M. y Martínez-Ruíz, A. 2017. Calibración de los modelos de pérdidas de suelo USLE y MUSLE en una cuenca forestal de México: caso El Malacate. Agrociencia. 51(3):265-284.

Saul, A. J. 1997. Combined sewer overflows. In: Sewers: rehabilitation and new construction repair and renovation. Ed. 1 Butterworth Heinemann. Oxford, UK. 283-317 pp.

Unal, N. E. 2018. Shear stress-based analysis of sediment incipient deposition in rigid boundary open channels. Water. 10(10):1399.

Yousif, A. A.; Sulaiman, S. O.; Diop, L.; Ehteram, M.; Shahid, S.; Ansari, N. and Yaseen, Z. M. 2019. Open channel sluice gate scouring parameters prediction: different scenarios of dimensional and non-dimensional input parameters. Water. 11(2):353.

Published

2024-01-17

How to Cite

Brigido-Morales, Juan Gabriel, Mauricio Carrillo-García, Jorge Víctor Prado-Hernández, and Jorge Flores-Velázquez. 2024. “Hydraulic Modeling of Three Flumes for Minimal Sedimentation”. Revista Mexicana De Ciencias Agrícolas 15 (1). México, ME:e3317. https://doi.org/10.29312/remexca.v15i1.3317.

Issue

Section

Articles

Most read articles by the same author(s)