Effect of mineral N and N2 on nitrogen nutrition in soybean plant
DOI:
https://doi.org/10.29312/remexca.v13i6.3311Keywords:
inoculation, N-amino acid, N-ureidoAbstract
The biological nitrogen fixation is a sustainable option to nitrogen fertilization. The objective of this study was to evaluate the effect of mineral nitrogen and N2 from the biological nitrogen fixation on nitrogen nutrition in soybean plants, six treatments resulting from combining three levels of mineral N: (0.0, 3.5 and 7 meq L-1 of NO3-) and inoculation with the CP-2 strain of Bradhyrizobium japonicum (with and without inoculation) were evaluated, each treatment was established in triplicate, in three-liter plastic pots and agrolite as substrate, transplanting six soybean seedlings per pot. Dry matter (DM) in plant organs, number and dry weight of nodules, fixation of N2, soluble N (N-amino acid and N-ureido) and total N per organ were evaluated. The plants that received mineral N transported between 86 and 95% of the total soluble N as N amino acid, while in inoculated plants, the supply of mineral N negatively affected the number of nodules (29%) and the weight of nodules (64%), decreasing 55% the fixation of N2, in these plants between 50 and 70% of the soluble N transported was as N ureido. At the R6 stage, it was estimated that 70% of the total N accumulated in the DM came from the fixed N2, favoring the DM of leaves, stems, petioles and mainly the DM in pods. Therefore, in this study it is demonstrated that plants inoculated and supplied with mineral N obtain better effects for DM and total N.
Downloads
References
Anglade, J.; Billen, G. and Garnier, J. 2015. Relationships for estimating N2 fixation in legumes: Incidence for N balance of legume-based cropping systems in europe. Ecosphere. 6(3):1-24. https://doi.org/10.1890/ES14-00353.1. DOI: https://doi.org/10.1890/ES14-00353.1
Bala, A. and Giller, K. E.. 2006. Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutr. Cycling Agroecosyst. 76(2):319-330. DOI: https://doi.org/10.1007/s10705-005-2003-y
Balta, C. R. A.; Rodríguez, D. Á. M.; Guerrero, A. R.; Cachique, D.; Edín, A. P.; Arévalo, L. L. y Oscar, L. O. L. I. 2015. Absorción y concentración de nitrógeno, fósforo y potasio en sacha inchi (Plukenetia volubilis L.) en suelos ácidos, San Martín, Perú. Folia Amazónica. 24(2):23-30 DOI: https://doi.org/10.24841/fa.v24i2.68
Cerezini, P.; Kuwano, B. H.; Grunvald, A. K.; Hungria, M. and Nogueira, M. A. 2020. Soybean tolerance to drought depends on the associated Bradyrhizobium strain. Brazilian Journal of Microbiology. 51(4):1977-1986.
Chen, C.; Wang, J.; Liu, D.; Yang, C.; Liu, Y.; Ruoff, R. S. and Lei, W. 2018. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nature communications. 9(1):1-8. DOI: https://doi.org/10.1038/s41467-018-04294-6
Collier, R. and Tegeder, M. 2012. Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. The Plant Journal. 72(3):355-367. DOI: https://doi.org/10.1111/j.1365-313X.2012.05086.x
Ertani, A.; Pizzeghello, D.; Altissimo, A. and Nardi, S. 2013. Use of meat hydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maize. Journal of Plant Nutrition and Soil Science. 176(2):287-295. DOI: https://doi.org/10.1002/jpln.201200020
Fernández, L. L. y Espinosa, V. D. 2008. Bioquímica, Fisiología, Morfología y senescencia nodular; Una revisión crítica. Terra Lationamericana. 134(26):133-144
Fontanetto, H.; Keller, O.; Sillón, M.; Albrecht, J.; Giailevra, D.; Negro, C. y Belotti, L. 2011. Manejo de la fertilización de la soja en regiones templadas. Informacion Tecnica Cultivos De Verano. Campaña 201.1INTA-Estación Experimental Agropecuaria Rafaela. Publicación Miscelánea núm. 121.
Freixas , C. J. A.; Torres de la N. W.; Escobar, M. I. M. R. y Napoles, G. M. 2011. Niveles de Ureidos en plantas de soya con diferentes iniculantes y sometidas a Dedicit Hidrico. Cultivos tropicales. 3(2):35-43.
Fustec, J.; Lesuffleur, F.; Mahieu, S. and Cliquet, J. B. 2010. Nitrogen rhizodeposition of legumes. A review. Agronomy for sustainable development. 30(1):57-66. DOI: https://doi.org/10.1051/agro/2009003
Grageda, C. O. A.; Mora, M.; Castellanos, R. J. Z.; Follet, R. F. and Peña, C. J. J. 2003. Fertilizer nitrogen recovery under different tillage treatments and cropping sequences in a vertisol in central México. IAEA-TECDOC. Viena. 1354(1):39-55.
Gregg, G. L.; Orlowski, J. M. and Lee, C. D. 2015. Input‐based stress management fails to increase soybean yield in Kentucky. Crop, Forage & Turfgrass Management. 1(1):1-7. DOI: https://doi.org/10.2134/cftm2015.0175
Hartmann, T. 2012. VI. Metabolism of Organic N-Compounds. Progress in Botany/Fortschritteder Botanik: Morphology physiology Genetics Taxonomy Geobotany /Morphologie Physiologie Genetik Systematik Geobotanik. 44:154-164.
Junior, C. P.; Favarin, J. L.; Lago, B. C.; Almeida, R. E. M.; Oliveira, S. M.; Trivelin, P. C. O. and Gilabel, A. P. 2020. Nitrogen Fertilizer Recovery and Partitioning Related to Soybean Yield. Journal of Soil Science and Plant Nutrition. 20(4):2566-2578.
Kipp, M. A.; Stüeken, E. E.; Gehringer, M. M.; Sterelny, K.; Scott, J. K.; Forster, P. I. and Buick, R. 2020. Exploring cycad foliage as an archive of the isotopic composition of atmospheric nitrogen. Geobiology.18(2):152-166.
Lopes, J. D. S. 2015. Crescimento e compostos nitrogenados de plantas jovens noduladas de Inga macrophylla benth. fertilizadas com diferentes formas de nitrogênio. In IV Congresso de Iniciação Científica do INPA-CONIC. Amazonia. Brasil. 410-415 pp.
Lu, M. Z.; Carter, A. M. and Tegeder, M. 2021. Altering ureide transport in nodulated soybean results in whole-plant adjustments of metabolism, assimilate partitioning, and sink strength. Journal of Plant Physiology. 269(1):153613. https://doi.org/10.1016/j.jplph.2021.153613.
McCoy, J. M.; Kaur, G.; Golden, B. R.; Orlowski, J. M.; Cook, D. R.; Bond, J. A. and Cox, M. S. 2018. Nitrogen fertilization of soybean affects root growth and nodulation on two soil types in Mississippi. Communications in Soil Science and Plant Analysis. 49(2):181-187. DOI: https://doi.org/10.1080/00103624.2017.1421649
Meena, V. S.; Mishra, P. K.; Bisht, J. K. and Pattanayak, A. 2017. Agriculturally important microbes for sustainable agriculture. Applications in crop production and protection. Springer. 2:81-128. https://doi.org/10.1007/978-981-10-5343-6Ohyama. DOI: https://doi.org/10.1007/978-981-10-5343-6
Ono, Y.; Fukasawa, M.; Sueyoshi, K.; Ohtake, N.; Sato, T.; Tanabata, S. and Ohyama, T. 2021. Application of Nitrate, Ammonium, or Urea Changes the Concentrations of Ureides, Urea, Amino Acids and Other Metabolites in Xylem Sap and in the Organs of Soybean Plants (Glycine max (L.) Merr.). International journal of molecular sciences. 22(9):4573.
Ortez, O.; Salvagiotti, F; Adee, E.; Enrico, J. and Ciampitti, I. A. 2017. “Soybean: Genetic Gain × Fertilizer Nitrogen Interaction”, Kansas Agricultural Experiment Station Research Reports. 3(6):6-21. https://doi.org/10.4148/2378-5977.7438. DOI: https://doi.org/10.4148/2378-5977.7438
Saturno, D. F.; Cerezini, P.; Moreira, S. P.; Oliveira, A. B.;Oliveira, M. C. N.; Hungria, M. and Nogueira, M. A. 2017. Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. Journal of Plant Nutrition. 40(12):1690-1701. https://doi.org/10.1080/01904167.2017.1310890. DOI: https://doi.org/10.1080/01904167.2017.1310890
Santachiara, G.; Borrás, L.; Salvagiotti, F.; Gerde, J. A. and Rotundo, J. L. 2017. Relative importance of biological nitrogen fixation and mineral uptake in high yielding soybean cultivars. Plant and Soil, 418(1):191-203. DOI: https://doi.org/10.1007/s11104-017-3279-9
Senthilkumar, M.; Amaresan, N. and Sankaranarayanan, A. 2021. Colorimetric analysis of ureide-N, amino-N, and nitrate-nitrogen. Plant-Microbe Interactions. Humana, New York. 49-52 pp.
Soumare, A.; Diedhiou, A. G.; Thuita, M. and Hafidi, M. 2020. Exploiting Biological Nitrogen Fixation. A Route Towards a Sustainable Agriculture. Plants. 9(8):1-22. doi: 10.3390/plants9081011.
Stal, L. J. 2017. The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium Fischerella sp. Scientific Reports. 7(1):1-10. DOI: https://doi.org/10.1038/s41598-017-05715-0
Tamagno, S. X.; Sadras, V. O.; Haegele, J. W.; Armstrong, P. R. and Ciampitti, I. A. 2018. Interplay between nitrogen fertilizer and biological nitrogen fixation in soybean: implications on seed yield and biomass allocation. Scientific Reports. 8(1):1-11.
Tirado, T. J. L. y Alcántar, G. G. 1989. Dinámica del nitrógeno en plantas de soya. TERRA. 7(2):133-142.
Tirado, T. J. L.; Conejero, G. G. y Alcántar, G. G. 1990. Efecto del nitrógeno mineral y el déficit hídrico sobre las dos vías de asimilación del nitrógeno en plantas de soya. TERRA. 8(2):182-191.
Xia, X. Ma, C.; Dong, S.; Xu, Y. and Gong, Z. 2017. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition. 63(5):470-482. DOI: https://doi.org/10.1080/00380768.2017.1370960
Yan, Z.; Li, P.; Chen, Y.; Han, W. and Fang, J. 2016. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific reports. 6(1):1-9. DOI: https://doi.org/10.1038/srep20099
Yoneyama, T.; Fujiwara, H. and Wilson, J. M. 2020. Variations in fractionation of carbon and nitrogen isotopes in higher plants: N metabolism and partitioning in phloem and xylem. Stable isotopes. Environmental Plant Biology. New York. 99-109 pp.
Zhou, W. J.; Ji, H. L.; Zhu, J. X.; Zhang, Y. P.; Sha, L. Q.; Liu, Y. T.; Zhang, X.; Zhao, W.; Dong, Y. X.; Bai, X. L.; Lin, Y. X.; Zhang, J. H. and Zheng, X. H. 2016. The effects of nitrogen fertilization on N2O emissions from a rubber plantation. Scientific Reports. 6(1):1-12. https://doi.org/10.1038/srep28230. DOI: https://doi.org/10.1038/srep28230
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Agrícolas accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Agrícolas recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access. Invariably, all the authors have to sign a letter of transfer of property rights and of originality of the article to Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) [National Institute of Forestry, Agricultural and Livestock Research]. The author(s) must pay a fee for the reception of articles before proceeding to editorial review.
All the texts published by Revista Mexicana de Ciencias Agrícolas —with no exception— are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned.
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Agrícolas (for example include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Agrícolas.
For all the above, the authors shall send the Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: revista_atm@yahoo.com.mx; cienciasagricola@inifap.gob.mx; remexca2017@gmail.
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.